13,027 research outputs found

    Sparse Filter Design Under a Quadratic Constraint: Low-Complexity Algorithms

    Get PDF
    This paper considers three problems in sparse filter design, the first involving a weighted least-squares constraint on the frequency response, the second a constraint on mean squared error in estimation, and the third a constraint on signal-to-noise ratio in detection. The three problems are unified under a single framework based on sparsity maximization under a quadratic performance constraint. Efficient and exact solutions are developed for specific cases in which the matrix in the quadratic constraint is diagonal, block-diagonal, banded, or has low condition number. For the more difficult general case, a low-complexity algorithm based on backward greedy selection is described with emphasis on its efficient implementation. Examples in wireless channel equalization and minimum-variance distortionless-response beamforming show that the backward selection algorithm yields optimally sparse designs in many instances while also highlighting the benefits of sparse design.Texas Instruments Leadership University Consortium Progra

    A Branch-and-Bound Algorithm for Quadratically-Constrained Sparse Filter Design

    Get PDF
    This paper presents an exact algorithm for sparse filter design under a quadratic constraint on filter performance. The algorithm is based on branch-and-bound, a combinatorial optimization procedure that can either guarantee an optimal solution or produce a sparse solution with a bound on its deviation from optimality. To reduce the complexity of branch-and-bound, several methods are developed for bounding the optimal filter cost. Bounds based on infeasibility yield incrementally accumulating improvements with minimal computation, while two convex relaxations, referred to as linear and diagonal relaxations, are derived to provide stronger bounds. The approximation properties of the two relaxations are characterized analytically as well as numerically. Design examples involving wireless channel equalization and minimum-variance distortionless-response beamforming show that the complexity of obtaining certifiably optimal solutions can often be significantly reduced by incorporating diagonal relaxations, especially in more difficult instances. In the case of early termination due to computational constraints, diagonal relaxations strengthen the bound on the proximity of the final solution to the optimum.Texas Instruments Leadership University Consortium Progra

    Design of sparse FIR filters with low group delay

    Get PDF
    The aim of the work is to present the method for designing sparse FIR filters with very low group delay and approximately linear-phase in the passband. Significant reduction of the group delay, e.g. several times in relation to the linear phase filter, may cause the occurrence of undesirable overshoot in the magnitude frequency response. The method proposed in this work consists of two stages. In the first stage, FIR filter with low group delay is designed using minimax constrained optimization that provides overshoot elimination. In the second stage, the same process is applied iteratively to reach sparse solution. Design examples demonstrate the effectiveness of the proposed method
    • …
    corecore