10,344 research outputs found

    Scalable Techniques for Similarity Search

    Get PDF
    Document similarity is similar to the nearest neighbour problem and has applications in various domains. In order to determine the similarity / dissimilarity of the documents first they need to be converted into sets containing shingles. Each document is converted into k-shingles, k being the length of each shingle. The similarity is calculated using Jaccard distance between sets and output into a characteristic matrix, the complexity to parse this matrix is significantly high especially when the sets are large. In this project we explore various approaches such as Min hashing, LSH & Bloom Filter to decrease the matrix size and to improve the time complexity. Min hashing creates a signature matrix which significantly smaller compared to a characteristic matrix. In this project we will look into Min-Hashing implementation, pros and cons. Also we will explore Locality Sensitive Hashing, Bloom Filters and their advantages

    Bloom Filters and Compact Hash Codes for Efficient and Distributed Image Retrieval

    Get PDF
    This paper presents a novel method for efficient image retrieval, based on a simple and effective hashing of CNN features and the use of an indexing structure based on Bloom filters. These filters are used as gatekeepers for the database of image features, allowing to avoid to perform a query if the query features are not stored in the database and speeding up the query process, without affecting retrieval performance. Thanks to the limited memory requirements the system is suitable for mobile applications and distributed databases, associating each filter to a distributed portion of the database. Experimental validation has been performed on three standard image retrieval datasets, outperforming state-of-the-art hashing methods in terms of precision, while the proposed indexing method obtains a 2×2\times speedup

    Optimization of star research algorithm for esmo star tracker

    Get PDF
    This paper explains in detail the design and the development of a software research star algorithm, embedded on a star tracker, by the ISAE/SUPAERO team. This research algorithm is inspired by musical techniques. This work will be carried out as part of the ESMO (European Student Moon Orbiter) project by different teams of students and professors from ISAE/SUPAERO (Institut Supe ́rieur de l’Ae ́ronautique et de l’Espace). Till today, the system engineering studies have been completed and the work that will be presented will concern the algorithmic and the embedded software development. The physical architecture of the sensor relies on APS 750 developed by the CIMI laboratory of ISAE/SUPAERO. First, a star research algorithm based on the image acquired in lost-in-space mode (one of the star tracker opera- tional modes) will be presented; it is inspired by techniques of musical recognition with the help of the correlation of digital signature (hash) with those stored in databases. The musical recognition principle is based on finger- printing, i.e. the extraction of points of interest in the studied signal. In the musical context, the signal spectrogram is used to identify these points. Applying this technique in image processing domain requires an equivalent tool to spectrogram. Those points of interest create a hash and are used to efficiently search within the database pre- viously sorted in order to be compared. The main goals of this research algorithm are to minimise the number of steps in the computations in order to deliver information at a higher frequency and to increase the computation robustness against the different possible disturbances

    Neural Distributed Autoassociative Memories: A Survey

    Full text link
    Introduction. Neural network models of autoassociative, distributed memory allow storage and retrieval of many items (vectors) where the number of stored items can exceed the vector dimension (the number of neurons in the network). This opens the possibility of a sublinear time search (in the number of stored items) for approximate nearest neighbors among vectors of high dimension. The purpose of this paper is to review models of autoassociative, distributed memory that can be naturally implemented by neural networks (mainly with local learning rules and iterative dynamics based on information locally available to neurons). Scope. The survey is focused mainly on the networks of Hopfield, Willshaw and Potts, that have connections between pairs of neurons and operate on sparse binary vectors. We discuss not only autoassociative memory, but also the generalization properties of these networks. We also consider neural networks with higher-order connections and networks with a bipartite graph structure for non-binary data with linear constraints. Conclusions. In conclusion we discuss the relations to similarity search, advantages and drawbacks of these techniques, and topics for further research. An interesting and still not completely resolved question is whether neural autoassociative memories can search for approximate nearest neighbors faster than other index structures for similarity search, in particular for the case of very high dimensional vectors.Comment: 31 page
    corecore