358 research outputs found

    A New Algorithm for Blind Adaptive Multiuser Detection in Frequency Selective Multipath Fading Channel

    Get PDF

    Blind adaptive near-far resistant receivers for DS/CDMA multi-user communication systems

    Get PDF
    Code-division multiple-access (CDMA) systems have multiple users that simultaneously share a common channel using pre-assigned signature waveforms. The conventional receiver suffers from the near-far problem when the received signal power of the desired user is weaker than those of the other users. Optimum and suboptimum multi-user detectors outperform the conventional receiver at the expense of a significant increase in complexity and need for side-information about interfering users. Complexity of these detectors may not be acceptable for many practical applications and communication security may restrict the distribution of all users\u27 signature waveforms to all the receivers;For a single-user receiver, the multi-user detection problem is viewed as an interference suppression problem. This dissertation presents a cost-constraint strategy to implement adaptive single-user receivers that suppress the multiple-access interference without using training sequences. A constrained LMS algorithm that converges to a near-optimum solution by using the received signal and some known properties of the desired signal is developed. The constrained LMS receiver is useful for static CDMA detection where the channel accessed by the desired user is time-invariant. The dissertation also develops an adaptive space-alternating generalized EM (SAGE) algorithm. This algorithm jointly updates estimates of filter weights and adaptive reference signal in a sequential manner. The SAGE receiver out-performs the existing: blind receiver that employ the constrained output-power-minimizing algorithm while using the same amount of information. The SAGE receiver is applicable to dynamic CDMA detection where the channel accessed by the desired user is time-varying. The dissertation further generalizes the adaptive SAGE algorithm to an adaptive space-alternating generalized projection (SAGP) algorithm that uses the same amount of information as in the conventional receiver;Proposed receivers are tested by simulations and compared with the existing receivers that use the same amount of information. Throughout the analytical analysis and simulations of the proposed receivers, the dissertation shows that, for realistic CDMA communications, achieving both the near-far resistance and the near-optimum performance is possible with the same or similar information required by the conventional receiver

    BAMUD Features Demonstration by System View

    Get PDF
    Direct-sequence code-division multiple access (DS-CDMA) is a frequently used wireless technology in DS-CDMA communications. The conventional DS-CDMA detector follows a single-user detection strategy in which each user is detected separately without regard for the other users. The better strategy is multi-user detection (MUD), where information about multiple users is used to improve detection of each individual user. This paper presents an adaptive multi-user detector converging (for any initialization) to the minimum mean square error (MMSE) detector without requiring training sequences. This blind multi-user detector (BAMUD) requires no more knowledge than does the conventional single-user detector. The structure of adaptive blind detector is simulated by the system design tool SystemView. The aim focus is to verify theoretical knowledge of BAMUD structure using hardware-oriented PC-based model in SystemView

    Pre-combining advanced blind multiuser detector for time and frequency selective wireless channel

    Get PDF
    corecore