95,960 research outputs found

    A black-box model for neurons

    Get PDF
    We explore the identification of neuronal voltage traces by artificial neural networks based on wavelets (Wavenet). More precisely, we apply a modification in the representation of dynamical systems by Wavenet which decreases the number of used functions; this approach combines localized and global scope functions (unlike Wavenet, which uses localized functions only). As a proof-of-concept, we focus on the identification of voltage traces obtained by simulation of a paradigmatic neuron model, the Morris-Lecar model. We show that, after training our artificial network with biologically plausible input currents, the network is able to identify the neuron's behaviour with high accuracy, thus obtaining a black box that can be then used for predictive goals. Interestingly, the interval of input currents used for training, ranging from stimuli for which the neuron is quiescent to stimuli that elicit spikes, shows the ability of our network to identify abrupt changes in the bifurcation diagram, from almost linear input-output relationships to highly nonlinear ones. These findings open new avenues to investigate the identification of other neuron models and to provide heuristic models for real neurons by stimulating them in closed-loop experiments, that is, using the dynamic-clamp, a well-known electrophysiology technique.Peer ReviewedPostprint (author's final draft

    Redundancy and Concept Analysis for Code-trained Language Models

    Full text link
    Code-trained language models have proven to be highly effective for various code intelligence tasks. However, they can be challenging to train and deploy for many software engineering applications due to computational bottlenecks and memory constraints. Implementing effective strategies to address these issues requires a better understanding of these 'black box' models. In this paper, we perform the first neuron-level analysis for source code models to identify \textit{important} neurons within latent representations. We achieve this by eliminating neurons that are highly similar or irrelevant to the given task. This approach helps us understand which neurons and layers can be eliminated (redundancy analysis) and where important code properties are located within the network (concept analysis). Using redundancy analysis, we make observations relevant to knowledge transfer and model optimization applications. We find that over 95\% of the neurons are redundant with respect to our code intelligence tasks and can be eliminated without significant loss in accuracy. We also discover several subsets of neurons that can make predictions with baseline accuracy. Through concept analysis, we explore the traceability and distribution of human-recognizable concepts within latent code representations which could be used to influence model predictions. We trace individual and subsets of important neurons to specific code properties and identify 'number' neurons, 'string' neurons, and higher-level 'text' neurons for token-level tasks and higher-level concepts important for sentence-level downstream tasks. This also helps us understand how decomposable and transferable task-related features are and can help devise better techniques for transfer learning, model compression, and the decomposition of deep neural networks into modules.Comment: 4 figures, 6 table

    Gradient-free activation maximization for identifying effective stimuli

    Full text link
    A fundamental question for understanding brain function is what types of stimuli drive neurons to fire. In visual neuroscience, this question has also been posted as characterizing the receptive field of a neuron. The search for effective stimuli has traditionally been based on a combination of insights from previous studies, intuition, and luck. Recently, the same question has emerged in the study of units in convolutional neural networks (ConvNets), and together with this question a family of solutions were developed that are generally referred to as "feature visualization by activation maximization." We sought to bring in tools and techniques developed for studying ConvNets to the study of biological neural networks. However, one key difference that impedes direct translation of tools is that gradients can be obtained from ConvNets using backpropagation, but such gradients are not available from the brain. To circumvent this problem, we developed a method for gradient-free activation maximization by combining a generative neural network with a genetic algorithm. We termed this method XDream (EXtending DeepDream with real-time evolution for activation maximization), and we have shown that this method can reliably create strong stimuli for neurons in the macaque visual cortex (Ponce et al., 2019). In this paper, we describe extensive experiments characterizing the XDream method by using ConvNet units as in silico models of neurons. We show that XDream is applicable across network layers, architectures, and training sets; examine design choices in the algorithm; and provide practical guides for choosing hyperparameters in the algorithm. XDream is an efficient algorithm for uncovering neuronal tuning preferences in black-box networks using a vast and diverse stimulus space.Comment: 16 pages, 8 figures, 3 table

    Towards Verifying the Geometric Robustness of Large-scale Neural Networks

    Full text link
    Deep neural networks (DNNs) are known to be vulnerable to adversarial geometric transformation. This paper aims to verify the robustness of large-scale DNNs against the combination of multiple geometric transformations with a provable guarantee. Given a set of transformations (e.g., rotation, scaling, etc.), we develop GeoRobust, a black-box robustness analyser built upon a novel global optimisation strategy, for locating the worst-case combination of transformations that affect and even alter a network's output. GeoRobust can provide provable guarantees on finding the worst-case combination based on recent advances in Lipschitzian theory. Due to its black-box nature, GeoRobust can be deployed on large-scale DNNs regardless of their architectures, activation functions, and the number of neurons. In practice, GeoRobust can locate the worst-case geometric transformation with high precision for the ResNet50 model on ImageNet in a few seconds on average. We examined 18 ImageNet classifiers, including the ResNet family and vision transformers, and found a positive correlation between the geometric robustness of the networks and the parameter numbers. We also observe that increasing the depth of DNN is more beneficial than increasing its width in terms of improving its geometric robustness. Our tool GeoRobust is available at https://github.com/TrustAI/GeoRobust

    Adversarial Sample Detection for Deep Neural Network through Model Mutation Testing

    Full text link
    Deep neural networks (DNN) have been shown to be useful in a wide range of applications. However, they are also known to be vulnerable to adversarial samples. By transforming a normal sample with some carefully crafted human imperceptible perturbations, even highly accurate DNN make wrong decisions. Multiple defense mechanisms have been proposed which aim to hinder the generation of such adversarial samples. However, a recent work show that most of them are ineffective. In this work, we propose an alternative approach to detect adversarial samples at runtime. Our main observation is that adversarial samples are much more sensitive than normal samples if we impose random mutations on the DNN. We thus first propose a measure of `sensitivity' and show empirically that normal samples and adversarial samples have distinguishable sensitivity. We then integrate statistical hypothesis testing and model mutation testing to check whether an input sample is likely to be normal or adversarial at runtime by measuring its sensitivity. We evaluated our approach on the MNIST and CIFAR10 datasets. The results show that our approach detects adversarial samples generated by state-of-the-art attacking methods efficiently and accurately.Comment: Accepted by ICSE 201

    Dysfunction of cortical GABAergic neurons leads to sensory hyper-reactivity in a Shank3 mouse model of ASD.

    Get PDF
    Hyper-reactivity to sensory input is a common and debilitating symptom in individuals with autism spectrum disorders (ASD), but the neural basis underlying sensory abnormality is not completely understood. Here we examined the neural representations of sensory perception in the neocortex of a Shank3B-/- mouse model of ASD. Male and female Shank3B-/- mice were more sensitive to relatively weak tactile stimulation in a vibrissa motion detection task. In vivo population calcium imaging in vibrissa primary somatosensory cortex (vS1) revealed increased spontaneous and stimulus-evoked firing in pyramidal neurons but reduced activity in interneurons. Preferential deletion of Shank3 in vS1 inhibitory interneurons led to pyramidal neuron hyperactivity and increased stimulus sensitivity in the vibrissa motion detection task. These findings provide evidence that cortical GABAergic interneuron dysfunction plays a key role in sensory hyper-reactivity in a Shank3 mouse model of ASD and identify a potential cellular target for exploring therapeutic interventions
    • …
    corecore