538 research outputs found

    An empirical comparison of the security and performance characteristics of topology formation algorithms for Bitcoin networks

    Get PDF
    There is an increasing demand for digital crypto-currencies to be more secure and robust to meet the following business requirements: (1) low transaction fees and (2) the privacy of users. Nowadays, Bitcoin is gaining traction and wide adoption. Many well-known businesses have begun accepting bitcoins as a means of making financial payments. However, the susceptibility of Bitcoin networks to information propagation delay, increases the vulnerability to attack of the Bitcoin network, and decreases its throughput performance. This paper introduces and critically analyses new network clustering methods, named Locality Based Clustering (LBC), Ping Time Based Approach (PTBC), Super Node Based Clustering (SNBA), and Master Node Based Clustering (MNBC). The proposed methods aim to decrease the chances of performing a successful double spending attack by reducing the information propagation delay of Bitcoin. These methods embody proximity-aware extensions to the standard Bitcoin protocol, where proximity is measured geographically and in terms of latency. We validate our proposed methods through a set of simulation experiments and the findings show how the proposed methods run and their impact in optimising the transaction propagation delay. Furthermore, these new methods are evaluated from the perspective of the Bitcoin network’s resistance to partitioning attacks. Numerical results, which are established via extensive simulation experiments, demonstrate how the extensions run and also their impact in optimising the transaction propagation delay. We draw on these findings to suggest promising future research directions for the optimisation of transaction propagation delays

    Security and Anonymity Aspects of the Network Layer of Permissionless Blockchains

    Get PDF
    Permissionless Blockchains sind dezentrale Systeme, die Konsens erzielen. Das prominenteste Beispiel einer Permissionless Blockchain ist das elektronische Zahlungssystem Bitcoin, welches Konsens über die von Teilnehmern des Systems erzeugten Finanztransaktionen erzielt. Während verteilter Konsens seit Jahrzehnten Gegenstand zahlreicher Forschungsarbeiten ist, ist Bitcoin das erste bekannte System, welches Konsens im sog. permissionless-Modell erzielt, d.h. ohne die vorausgehende Feststellung der Identitäten der Teilnehmer des Systems. Die Teilnehmer von Permissionless Blockchains kommunizieren über ein unstrukturiertes Peer-to-Peer (P2P) Netzwerk miteinander. Da das Verfahren zur Konsensbildung von Permissionless Blockchains auf Daten basiert, die über dieses P2P-Netzwerk übertragen werden, können Sicherheitslücken in der Netzwerkschicht auch die Konsensbildung und damit die angestrebte Funktion des Systems beeinflussen. Während unstrukturierte P2P-Netzwerke in der Vergangenheit umfassend analysiert wurden, führt ihr Einsatz in Permissionless Blockchains zu Sicherheitsanforderungen und Angreifermodellen, die bisher noch nicht berücksichtigt wurden. Obwohl einzelne Angriffe auf die Netzwerkschicht von Permissionless Blockchains analysiert wurden, ist unklar, welche Sicherheitseigenschaften die Netzwerkschicht von Permissionless Blockchains haben sollte. Diese Unklarheit motiviert die erste in dieser Dissertation behandelte Forschungsfrage: Wie können Anforderungen und Zielkonflikte, die in den Mechanismen der Netzwerkschicht von Permissionless Blockchains vorhanden sind, untersucht werden? In dieser Dissertation wird eine Systematisierung von Angriffen auf die Netzwerkschicht von Bitcoin vorgestellt, in der Angriffe hinsichtlich der angegriffenen Mechanismen und der Auswirkungen der Angriffe auf höhere Schichten des Systems kategorisiert werden. Basierend auf der Systematisierung werden fünf Anforderungen für die Netzwerkschicht von Permissionless Blockchains abgeleitet: Leistung, niedrige Beteiligungskosten, Anonymität, Robustheit gegen Denial-of-Service Angriffe sowie Topologieverschleierung. Darüber hinaus werden der Entwurfsraum der Netzwerkschicht aufgezeigt und der Einfluss von Entwurfsentscheidungen auf die Erfüllung von Anforderungen qualitativ untersucht. Die durchgeführten Systematisierungen weisen auf inhärente Zielkonflikte sowie Forschungsmöglichkeiten hin und unterstützen die Entwicklung von Permissionless Blockchains. Weiterhin wird auf Grundlage von seit 2015 durchgeführten Messungen eine Charakterisierung des Bitcoin-P2P-Netzwerks präsentiert. Die Charakterisierung ermöglicht die Parametrisierung und Validierung von Simulationsmodellen und die Bewertung der Zuverlässigkeit von realen Experimenten. Darüber hinaus gewährt die Netzwerkcharakterisierung Einblicke in das Verhalten von Netzwerkknoten und deren Betreibern. Beispielsweise kann gezeigt werden, dass Sybil-Ereignisse in der Vergangenheit im Bitcoin-P2P-Netzwerk stattgefunden haben und dass die Leistung und die Anonymitätseigenschaften der Transaktions- und Blockausbreitung durch Implementierungs- und Protokolländerungen verbessert worden sind. Auf Grundlage dieser Charakterisierung werden zwei ereignisdiskrete Simulationsmodelle des Bitcoin-P2P-Netzwerks entworfen. Die Modelle werden durch einen Vergleich der simulierten Informationsausbreitungsverzögerung mit der beobachteten Informationsausbreitungsverzögerung im realen Netzwerk validiert. Da der Vergleich eine hohe Übereinstimmung zeigt, ermöglichen die vorgestellten Simulationsmodelle die Simulation des Bitcoin-Netzwerks mit einer Genauigkeit, die für die Analyse von Angriffen im Bitcoin-Netzwerk ausreicht. Die vorgestellten Simulationsmodelle sowie die durchgeführte Systematisierung von Angriffen verdeutlichen die Bedeutung der Kenntnis der Netzwerktopologie als Grundlage für Forschung und die Analyse von Deanonymisierungsangriffe. Daher adressiert die zweite Forschungsfrage dieser Dissertation Methoden der Topologieinferenz und der Deanonymisierung: Unter welchen Voraussetzungen und in welchem Maße sind netzwerkbasierte Topologieinferenz und Deanonymisierung in Bitcoin (un)möglich? Diese Frage wird durch Anwendung der vorgeschlagenen Methodenkombination aus Messungen, Simulationen und Experimenten beantwortet. In dieser Dissertation werden vier verschiedene Methoden zur Topologieinferenz vorgestellt und unter Verwendung von Experimenten und Simulationsstudien analysiert. Anhand von Experimenten wird gezeigt, dass ein Angreifer, der in der Lage ist, Verbindungen zu allen Knoten des Netzwerks zu etablieren, die direkten Nachbarn eines Netzwerkknotens mit hoher Sensitivität (recall) und Genauigkeit (precision) (87% recall, 71% precision) durch die Veröffentlichung von widersprüchlichen Transaktionen im Netzwerk herausfinden kann. Unter der Annahme eines passiven Angreifers, der in der Lage ist, sich mit allen erreichbaren Netzwerkknoten zu verbinden, war 2016 ein Rückschluss auf die Nachbarn eines Netzwerkknotens mit einer Sensitivität von 40% bei einer Genauigkeit von 40% durch Beobachtung von mindestens acht Transaktionen, die von diesem Netzwerkknoten stammen, möglich. Darüber hinaus ist es möglich, die Akkumulation mehrere Transaktionen zum Zwecke der Topologieinferenz zu geringen Kosten auszunutzen. Allerdings bleibt die erwartete Inferenzqualität aufgrund fehlender Validierungsmöglichkeiten unklar. Schließlich kann simulativ gezeigt werden, dass der Peer-Discovery-Mechanismus eines P2P-Netzwerks bei bestimmte Parametrisierungen Topologinferenz ermöglichen kann. Abschließend wird die Möglichkeit einer netzwerkbasierten Deanonymisierung bewertet, indem analysiert wird, ob eine Korrelation zwischen der IP-Adresse des Netzwerkknotens, der eine Transaktion veröffentlicht, und dem mutmaßlichen Ersteller der Transaktion besteht. Der zugrundeliegende Datensatz basiert auf den durchgeführten Messungen und besteht aus fast 10 Millionen Transaktionen mit zugehörigen IP-Adressen. Es wird gezeigt, dass Transaktionen von 5% bis 8.3% der Benutzer auffallend häufig von einzelnen Netzwerkknoten veröffentlicht wurden, was diese Benutzer dem Risiko netzwerkbasierter Deanonymisierungsangriffe aussetzt

    Security and performance evaluation of master node protocol based reputation blockchain in the bitcoin network.

    Get PDF
    Bitcoin is a digital currency based on a peer-to-peer network to propagate and verify transactions. Bitcoin is gaining wider adoption than any previous crypto-currency. However, the mechanism of peers randomly choosing logical neighbours without any knowledge about the underlying physical topology can cause a delay overhead in information propagation which makes the system vulnerable to double spend attacks. Aiming at alleviating the propagation delay problem, this paper introduces a proximity-aware extension to the current Bitcoin protocol, named Master Node Based Clustering (MNBC). The ultimate purpose of the proposed protocol, which is based on how clusters are formulated and how nodes can define their membership, is to improve the information propagation delay in the Bitcoin network. In the MNBC protocol, physical internet connectivity increases as well as the number of hops between nodes decreases through assigning nodes to be responsible for maintaining clusters based on physical Internet proximity. Furthermore, a reputation-based blockchain protocol is integrated with MNBC protocol in order to securely assign a master node for every cluster. We validate our proposed methods through a set of simulation experiments and the findings show how the proposed methods run and their impact in optimising the transaction propagation delay
    corecore