3 research outputs found

    Information Retrieval for Multivariate Research Data Repositories

    Get PDF
    In this dissertation, I tackle the challenge of information retrieval for multivariate research data by providing novel means of content-based access. Large amounts of multivariate data are produced and collected in different areas of scientific research and industrial applications, including the human or natural sciences, the social or economical sciences and applications like quality control, security and machine monitoring. Archival and re-use of this kind of data has been identified as an important factor in the supply of information to support research and industrial production. Due to increasing efforts in the digital library community, such multivariate data are collected, archived and often made publicly available by specialized research data repositories. A multivariate research data document consists of tabular data with mm columns (measurement parameters, e.g., temperature, pressure, humidity, etc.) and nn rows (observations). To render such data-sets accessible, they are annotated with meta-data according to well-defined meta-data standard when being archived. These annotations include time, location, parameters, title, author (and potentially many more) of the document under concern. In particular for multivariate data, each column is annotated with the parameter name and unit of its data (e.g., water depth [m]). The task of retrieving and ranking the documents an information seeker is looking for is an important and difficult challenge. To date, access to this data is primarily provided by means of annotated, textual meta-data as described above. An information seeker can search for documents of interest, by querying for the annotated meta-data. For example, an information seeker can retrieve all documents that were obtained in a specific region or within a certain period of time. Similarly, she can search for data-sets that contain a particular measurement via its parameter name or search for data-sets that were produced by a specific scientist. However, retrieval via textual annotations is limited and does not allow for content-based search, e.g., retrieving data which contains a particular measurement pattern like a linear relationship between water depth and water pressure, or which is similar to example data the information seeker provides. In this thesis, I deal with this challenge and develop novel indexing and retrieval schemes, to extend the established, meta-data based access to multivariate research data. By analyzing and indexing the data patterns occurring in multivariate data, one can support new techniques for content-based retrieval and exploration, well beyond meta-data based query methods. This allows information seekers to query for multivariate data-sets that exhibit patterns similar to an example data-set they provide. Furthermore, information seekers can specify one or more particular patterns they are looking for, to retrieve multivariate data-sets that contain similar patterns. To this end, I also develop visual-interactive techniques to support information seekers in formulating such queries, which inherently are more complex than textual search strings. These techniques include providing an over-view of potentially interesting patterns to search for, that interactively adapt to the user's query as it is being entered. Furthermore, based on the pattern description of each multivariate data document, I introduce a similarity measure for multivariate data. This allows scientists to quickly discover similar (or contradictory) data to their own measurements

    A Benchmark for Content-Based Retrieval in Bivariate Data Collections

    No full text
    Huge amounts of various research data are produced and made publicly available in digital libraries. An important category is bivariate data (measurements of one variable versus the other). Examples of bivariate data include observations of temperature and ozone levels (e.g., in environmental observation), domestic production and unemployment (e.g., in economics), or education and income level levels (in the social sciences). For accessing these data, content-based retrieval is an important query modality. It allows researchers to search for specific relationships among data variables (e.g., quadratic dependence of temperature on altitude). However, such retrieval is to date a challenge, as it is not clear which similarity measures to apply. Various approaches have been proposed, yet no benchmarks to compare their retrieval effectiveness have been defined. In this paper, we construct a benchmark for retrieval of bivariate data. It is based on a large collection of bivariate research data. To define similarity classes, we use category information that was annotated by domain experts. The resulting similarity classes are used to compare several recently proposed content-based retrieval approaches for bivariate data, by means of precision and recall. This study is the first to present an encompassing benchmark data set and compare the performance of respective techniques. We also identify potential research directions based on the results obtained for bivariate data. The benchmark and implementations of similarity functions are made available, to foster research in this emerging area of content-based retrieval
    corecore