16,879 research outputs found

    High-Dimensional Bayesian Geostatistics

    Full text link
    With the growing capabilities of Geographic Information Systems (GIS) and user-friendly software, statisticians today routinely encounter geographically referenced data containing observations from a large number of spatial locations and time points. Over the last decade, hierarchical spatiotemporal process models have become widely deployed statistical tools for researchers to better understand the complex nature of spatial and temporal variability. However, fitting hierarchical spatiotemporal models often involves expensive matrix computations with complexity increasing in cubic order for the number of spatial locations and temporal points. This renders such models unfeasible for large data sets. This article offers a focused review of two methods for constructing well-defined highly scalable spatiotemporal stochastic processes. Both these processes can be used as "priors" for spatiotemporal random fields. The first approach constructs a low-rank process operating on a lower-dimensional subspace. The second approach constructs a Nearest-Neighbor Gaussian Process (NNGP) that ensures sparse precision matrices for its finite realizations. Both processes can be exploited as a scalable prior embedded within a rich hierarchical modeling framework to deliver full Bayesian inference. These approaches can be described as model-based solutions for big spatiotemporal datasets. The models ensure that the algorithmic complexity has ∼n\sim n floating point operations (flops), where nn the number of spatial locations (per iteration). We compare these methods and provide some insight into their methodological underpinnings

    Efficient and automatic methods for flexible regression on spatiotemporal data, with applications to groundwater monitoring

    Get PDF
    Fitting statistical models to spatiotemporal data requires finding the right balance between imposing smoothness and following the data. In the context of P-splines, we propose a Bayesian framework for choosing the smoothing parameter which allows the construction of fully-automatic data-driven methods for fitting flexible models to spatiotemporal data. An implementation, which is highly computationally efficient and which exploits the sparsity of the design and penalty matrices, is proposed. The findings are illustrated using a simulation study and two examples, all concerned with the modelling of contaminants in groundwater. This suggests that the proposed strategy is more stable that competing methods based on the use of criteria such as GCV and AIC

    Multivariate Spatiotemporal Hawkes Processes and Network Reconstruction

    Full text link
    There is often latent network structure in spatial and temporal data and the tools of network analysis can yield fascinating insights into such data. In this paper, we develop a nonparametric method for network reconstruction from spatiotemporal data sets using multivariate Hawkes processes. In contrast to prior work on network reconstruction with point-process models, which has often focused on exclusively temporal information, our approach uses both temporal and spatial information and does not assume a specific parametric form of network dynamics. This leads to an effective way of recovering an underlying network. We illustrate our approach using both synthetic networks and networks constructed from real-world data sets (a location-based social media network, a narrative of crime events, and violent gang crimes). Our results demonstrate that, in comparison to using only temporal data, our spatiotemporal approach yields improved network reconstruction, providing a basis for meaningful subsequent analysis --- such as community structure and motif analysis --- of the reconstructed networks
    • …
    corecore