537 research outputs found
A Minimalist Approach to Type-Agnostic Detection of Quadrics in Point Clouds
This paper proposes a segmentation-free, automatic and efficient procedure to
detect general geometric quadric forms in point clouds, where clutter and
occlusions are inevitable. Our everyday world is dominated by man-made objects
which are designed using 3D primitives (such as planes, cones, spheres,
cylinders, etc.). These objects are also omnipresent in industrial
environments. This gives rise to the possibility of abstracting 3D scenes
through primitives, thereby positions these geometric forms as an integral part
of perception and high level 3D scene understanding.
As opposed to state-of-the-art, where a tailored algorithm treats each
primitive type separately, we propose to encapsulate all types in a single
robust detection procedure. At the center of our approach lies a closed form 3D
quadric fit, operating in both primal & dual spaces and requiring as low as 4
oriented-points. Around this fit, we design a novel, local null-space voting
strategy to reduce the 4-point case to 3. Voting is coupled with the famous
RANSAC and makes our algorithm orders of magnitude faster than its conventional
counterparts. This is the first method capable of performing a generic
cross-type multi-object primitive detection in difficult scenes. Results on
synthetic and real datasets support the validity of our method.Comment: Accepted for publication at CVPR 201
Data-Driven Grasp Synthesis - A Survey
We review the work on data-driven grasp synthesis and the methodologies for
sampling and ranking candidate grasps. We divide the approaches into three
groups based on whether they synthesize grasps for known, familiar or unknown
objects. This structure allows us to identify common object representations and
perceptual processes that facilitate the employed data-driven grasp synthesis
technique. In the case of known objects, we concentrate on the approaches that
are based on object recognition and pose estimation. In the case of familiar
objects, the techniques use some form of a similarity matching to a set of
previously encountered objects. Finally for the approaches dealing with unknown
objects, the core part is the extraction of specific features that are
indicative of good grasps. Our survey provides an overview of the different
methodologies and discusses open problems in the area of robot grasping. We
also draw a parallel to the classical approaches that rely on analytic
formulations.Comment: 20 pages, 30 Figures, submitted to IEEE Transactions on Robotic
Bayesian Quadrature for Multiple Related Integrals
Bayesian probabilistic numerical methods are a set of tools providing
posterior distributions on the output of numerical methods. The use of these
methods is usually motivated by the fact that they can represent our
uncertainty due to incomplete/finite information about the continuous
mathematical problem being approximated. In this paper, we demonstrate that
this paradigm can provide additional advantages, such as the possibility of
transferring information between several numerical methods. This allows users
to represent uncertainty in a more faithful manner and, as a by-product,
provide increased numerical efficiency. We propose the first such numerical
method by extending the well-known Bayesian quadrature algorithm to the case
where we are interested in computing the integral of several related functions.
We then prove convergence rates for the method in the well-specified and
misspecified cases, and demonstrate its efficiency in the context of
multi-fidelity models for complex engineering systems and a problem of global
illumination in computer graphics.Comment: Proceedings of the 35th International Conference on Machine Learning
(ICML), PMLR 80:5369-5378, 201
Data-Driven Grasp Synthesis—A Survey
We review the work on data-driven grasp synthesis and the methodologies for sampling and ranking candidate grasps. We divide the approaches into three groups based on whether they synthesize grasps for known, familiar, or unknown objects. This structure allows us to identify common object representations and perceptual processes that facilitate the employed data-driven grasp synthesis technique. In the case of known objects, we concentrate on the approaches that are based on object recognition and pose estimation. In the case of familiar objects, the techniques use some form of a similarity matching to a set of previously encountered objects. Finally, for the approaches dealing with unknown objects, the core part is the extraction of specific features that are indicative of good grasps. Our survey provides an overview of the different methodologies and discusses open problems in the area of robot grasping. We also draw a parallel to the classical approaches that rely on analytic formulations
Tele-Autonomous control involving contact
Object localization and its application in tele-autonomous systems are studied. Two object localization algorithms are presented together with the methods of extracting several important types of object features. The first algorithm is based on line-segment to line-segment matching. Line range sensors are used to extract line-segment features from an object. The extracted features are matched to corresponding model features to compute the location of the object. The inputs of the second algorithm are not limited only to the line features. Featured points (point to point matching) and featured unit direction vectors (vector to vector matching) can also be used as the inputs of the algorithm, and there is no upper limit on the number of the features inputed. The algorithm will allow the use of redundant features to find a better solution. The algorithm uses dual number quaternions to represent the position and orientation of an object and uses the least squares optimization method to find an optimal solution for the object's location. The advantage of using this representation is that the method solves for the location estimation by minimizing a single cost function associated with the sum of the orientation and position errors and thus has a better performance on the estimation, both in accuracy and speed, than that of other similar algorithms. The difficulties when the operator is controlling a remote robot to perform manipulation tasks are also discussed. The main problems facing the operator are time delays on the signal transmission and the uncertainties of the remote environment. How object localization techniques can be used together with other techniques such as predictor display and time desynchronization to help to overcome these difficulties are then discussed
- …
