31 research outputs found

    A Bayesian Approach to Sparse plus Low rank Network Identification

    Full text link
    We consider the problem of modeling multivariate time series with parsimonious dynamical models which can be represented as sparse dynamic Bayesian networks with few latent nodes. This structure translates into a sparse plus low rank model. In this paper, we propose a Gaussian regression approach to identify such a model

    Bayesian topology identification of linear dynamic networks

    Full text link
    In networks of dynamic systems, one challenge is to identify the interconnection structure on the basis of measured signals. Inspired by a Bayesian approach in [1], in this paper, we explore a Bayesian model selection method for identifying the connectivity of networks of transfer functions, without the need to estimate the dynamics. The algorithm employs a Bayesian measure and a forward-backward search algorithm. To obtain the Bayesian measure, the impulse responses of network modules are modeled as Gaussian processes and the hyperparameters are estimated by marginal likelihood maximization using the expectation-maximization algorithm. Numerical results demonstrate the effectiveness of this method

    Local module identification in dynamic networks with correlated noise: the full input case

    Get PDF
    The identification of local modules in dynamic networks with known topology has recently been addressed by formulating conditions for arriving at consistent estimates of the module dynamics, typically under the assumption of having disturbances that are uncorrelated over the different nodes. The conditions typically reflect the selection of a set of node signals that are taken as predictor inputs in a MISO identification setup. In this paper an extension is made to arrive at an identification setup for the situation that process noises on the different node signals can be correlated with each other. In this situation the local module may need to be embedded in a MIMO identification setup for arriving at a consistent estimate with maximum likelihood properties. This requires the proper treatment of confounding variables. The result is an algorithm that, based on the given network topology and disturbance correlation structure, selects an appropriate set of node signals as predictor inputs and outputs in a MISO or MIMO identification setup. As a first step in the analysis, we restrict attention to the (slightly conservative) situation where the selected output node signals are predicted based on all of their in-neighbor node signals in the network.Comment: Extended version of paper submitted to the 58th IEEE Conf. Decision and Control, Nice, 201
    corecore