80 research outputs found

    Tufa stromatolite ecosystems on the South African south coast

    Get PDF
    Following the first description of living marine stromatolites along the South African east coast, new investigations along the south coast have revealed the occurrence of extensive fields of actively calcifying stromatolites. These stromatolites have been recorded at regular distances along a 200-km stretch of coastline, from Cape Recife in the east to the Storms River mouth in the west, with the highest density found between Schoenmakerskop and the Maitland River mouth. All active stromatolites are associated with freshwater seepage streams flowing from the dune cordon, which form rimstone dams and other accretions capable of retaining water in the supratidal platform. Resulting pools can reach a maximum depth of about 1 m and constitute a unique ecosystem in which freshwater and marine organisms alternate their dominance in response to vertical mixing and the balance between freshwater versus marine inflow. Although the factors controlling stromatolite growth are yet to be determined, nitrogen appears to be supplied mainly via the dune seeps. The epibenthic algal community within stromatolite pools is generally co-dominated by cyanobacteria and chlorophytes, with minimal diatom contribution

    Community structure and trophic relations in marine tufa stromatolite pools of the Eastern Cape

    Get PDF
    Microbialites were the dominant life-form of most shallow oceans during the Precambrian. These structures are formed by the deposition of calcium carbonate by cyanobacteria as well as the binding and trapping of sediment by these and other microalgae. In modern environments they are scarce due to several factors, including grazing pressures by metazoans, altered calcium carbonate saturation states of seawater and competition with macroalgae. The recent discovery of an extensive network of actively accreting layered microbialites (stromatolites) along the South African coastline is potentially informative from this perspective. These stromatolites form within the peritidal zone, at the interface of groundwater seepage and periodic marine incursion, forming pools trapped by the accreting fabric. The aim of this thesis was to characterise the ecosystem dynamics of a representative selection of the South African locations. During a comprehensive monthly assessment over an annual cycle, as well as for additional seasonal collections, physico-chemical measurements were monitored together with biological components such as benthic and pelagic microalgae as well as the invertebrate fauna inhabiting the stromatolite pools. These components were then assessed in terms of the potential physical and biological drivers which might explain patterns of variability. Finally, to link all of the ecosystem components, a food-web analysis was conducted, to determine the trophic linkages and, importantly, the reliance by the various consumer organisms on the stromatolite material as a food resource. Results show that the stromatolite pools are driven by a regular interplay between freshwater and marine salinity states, this being determined by tidal amplitude and ocean storm cycles. Furthermore, marine incursion represents the primary source of phosphorus for the stromatolite pools, while available nitrogen is consistently provided by the freshwater inlet stream at each site. This results in an optimum zone of primary biomass within the main stromatolite pool supported by nutrient conditions, while the shifts in salinity state occurring over a weekly tidal schedule likely exclude organisms and macrophytes that are not halotolerant. This is reflected in the benthic microalgae that form the stromatolite accretions in that they are primarily driven by salinity conditions, in addition to seasonal patterns. Interestingly, the variable nutrient conditions, both between sites and temporally, did not contribute as an important driver of the benthic microalgae but did significantly relate to the pelagic microalgae (phytoplankton). This, together with the higher biomass of benthic microalgae compared to its pelagic counterpart, suggests that the stromatolite pools are a benthic-driven system. The short duration of water retention within the stromatolite pools as a result of the constant freshwater inflow, likely also precludes nutrient build-up and favours the benthic, sessile ecosystem component, especially the stromatolite-forming microalgae. In terms of the metazoan infauna, the South African stromatolite pools support a persistent assemblage. This might be surprising given the apparently destructive influence of grazing and burrowing animals on microbial mats in terms of restricting the formation of layered accretions. However, metazoans that burrow within the stromatolite fabric were observed to coexist with clear, layered accretions. This supports the observations in some other modern microbialite habitats to suggest that metazoan disruption is clearly not the only or primary factor responsible for modern microbialite scarcity. When assessing the possible drivers of the metazoan community occupying the stromatolite matrix, both salinity patterns and resource conditions in terms of nutrient supply and macroalgal cover were consistently best related to infaunal abundance and presence/absence. This further demonstrates the role of salinity conditions in terms of providing a habitat that is restrictive to most metazoan organisms, while also suggesting that the metazoans are responding to macroalgal rather than the stromatolite microalgal conditions. To further develop this observation, the results from the stable isotope work clearly reflect a dominance of pool macroalgae in the diets of invertebrate consumers, with little to no stromatolite material consumed. This suggests that there is limited apparent destructive grazing influence by the metazoans on the stromatolite matrix, in addition to the burrowing bioturbation mentioned previously. Furthermore, the metazoan grazers may be indirectly benefitting the stromatolites by restricting macroalgal biomass, which might otherwise outcompete its microalgal counterpart. This study provides a valuable understanding of benthic-driven peritidal stromatolite ecosystems, and also, from a geological perspective of past stromatolite habitats, suggests some of the mechanisms as to why metazoans may be able to coexist with layered microbialites. Given the threats to similar habitats globally, especially in terms of water resources, management measures necessary to ensure stromatolite persistence in modern environments such as these are proposed. The possible ecological role of peritidal stromatolite habitats within the broader environment, as well as recommendations for future work, is also contextualised

    Erosion‐initiated stromatolite and thrombolite formation in a present‐day coastal sabkha setting

    Get PDF
    Laminated microbial mats and microbialites have been documented from a variety of coastal marine environments. This study aims to provide the first detailed descriptions of intertidal pools, along with their hosted thrombolite and stromatolite structures, from Abu Dhabi, and to propose a model for their formation and evolution. It is proposed that the development of pools within the upper intertidal zone was initiated by localized erosion of the laminated microbial mats during high energy events. The removal of the protective mats permitted erosion of the underlying unconsolidated sediment to produce erosional scours that continued to develop to create the pools observed today. The margins of the newly‐created submerged environment were colonized by a cyanobacteria dominated microbial community. The precipitation of aragonite cement, associated with the cyanobacteria, stabilized the pool walls and cemented the microbial communities to form stromatolitic and thrombolitic fabrics. Syndepositional cementation was further enhanced by the precipitation of marine cements as a result of evaporation‐driven Ca2+ and Mg2+ supersaturation. Erosion behind and below the cemented pool wall eventually resulted in rim‐collapse and the formation of the observed pool margin parallel thrombolite bands. Successive generations of lithification and erosion increased the area of the pool with the earliest thrombolites eroding and becoming increasingly isolated. In summary, the resultant microbialites developed through the complex interplay of erosion, abiotic early lithification and microbially‐mediated processes, and represent a continuum between unlithified laminated microbial mats and domal microbialites. These features are most likely produced during a sea‐level scenario of stillstand or transgression and, as such, may be useful as a diagnostic tool to elucidate the onset of transgression. The newly proposed model for stromatolite formation has significant implications for the recognition and interpretation of similar structures observed in the fossil record

    Timing the evolution of antioxidant enzymes in cyanobacteria

    Get PDF
    How early photosynthesizers managed oxidative stress remains relatively unresolved. Analyses of enzymes dealing with reactive oxygen species traces the evolutionary history of superoxide dismutases and finds evidence of CuZnSOD in the ancestor of all cyanobacteria, dating back to the Archaean

    Deciphering Biosignatures in Planetary Contexts

    Get PDF
    Microbial life permeates Earth's critical zone and has likely inhabited nearly all our planet's surface and near subsurface since before the beginning of the sedimentary rock record. Given the vast time that Earth has been teeming with life, do astrobiologists truly understand what geological features untouched by biological processes would look like? In the search for extraterrestrial life in the Universe, it is critical to determine what constitutes a biosignature across multiple scales, and how this compares with “abiosignatures” formed by nonliving processes. Developing standards for abiotic and biotic characteristics would provide quantitative metrics for comparison across different data types and observational time frames. The evidence for life detection falls into three categories of biosignatures: (1) substances, such as elemental abundances, isotopes, molecules, allotropes, enantiomers, minerals, and their associated properties; (2) objects that are physical features such as mats, fossils including trace-fossils and microbialites (stromatolites), and concretions; and (3) patterns, such as physical three-dimensional or conceptual n-dimensional relationships of physical or chemical phenomena, including patterns of intermolecular abundances of organic homologues, and patterns of stable isotopic abundances between and within compounds. Five key challenges that warrant future exploration by the astrobiology community include the following: (1) examining phenomena at the “right” spatial scales because biosignatures may elude us if not examined with the appropriate instrumentation or modeling approach at that specific scale; (2) identifying the precise context across multiple spatial and temporal scales to understand how tangible biosignatures may or may not be preserved; (3) increasing capability to mine big data sets to reveal relationships, for example, how Earth's mineral diversity may have evolved in conjunction with life; (4) leveraging cyberinfrastructure for data management of biosignature types, characteristics, and classifications; and (5) using three-dimensional to n-D representations of biotic and abiotic models overlain on multiple overlapping spatial and temporal relationships to provide new insights

    Extreme environmental conditions reduce coral reef fish biodiversity and productivity

    Get PDF
    Tropical ectotherms are hypothesized to be vulnerable to environmental changes, but cascading effects of organismal tolerances on the assembly and functioning of reef fish communities are largely unknown. Here, we examine differences in organismal traits, assemblage structure, and productivity of cryptobenthic reef fishes between the world’s hottest, most extreme coral reefs in the southern Arabian Gulf and the nearby, but more environmentally benign, Gulf of Oman. We show that assemblages in the Arabian Gulf are half as diverse and less than 25% as abundant as in the Gulf of Oman, despite comparable benthic composition and live coral cover. This pattern appears to be driven by energetic deficiencies caused by responses to environmental extremes and distinct prey resource availability rather than absolute thermal tolerances. As a consequence, production, transfer, and replenishment of biomass through cryptobenthic fish assemblages is greatly reduced on Earth’s hottest coral reefs. Extreme environmental conditions, as predicted for the end of the 21st century, could thus disrupt the community structure and productivity of a critical functional group, independent of live coral loss

    Evolution of Cyanobacteria Through Geological Time

    Get PDF
    • 

    corecore