24,836 research outputs found

    Basic Enhancement Strategies When Using Bayesian Optimization for Hyperparameter Tuning of Deep Neural Networks

    Get PDF
    Compared to the traditional machine learning models, deep neural networks (DNN) are known to be highly sensitive to the choice of hyperparameters. While the required time and effort for manual tuning has been rapidly decreasing for the well developed and commonly used DNN architectures, undoubtedly DNN hyperparameter optimization will continue to be a major burden whenever a new DNN architecture needs to be designed, a new task needs to be solved, a new dataset needs to be addressed, or an existing DNN needs to be improved further. For hyperparameter optimization of general machine learning problems, numerous automated solutions have been developed where some of the most popular solutions are based on Bayesian Optimization (BO). In this work, we analyze four fundamental strategies for enhancing BO when it is used for DNN hyperparameter optimization. Specifically, diversification, early termination, parallelization, and cost function transformation are investigated. Based on the analysis, we provide a simple yet robust algorithm for DNN hyperparameter optimization - DEEP-BO (Diversified, Early-termination-Enabled, and Parallel Bayesian Optimization). When evaluated over six DNN benchmarks, DEEP-BO mostly outperformed well-known solutions including GP-Hedge, BOHB, and the speed-up variants that use Median Stopping Rule or Learning Curve Extrapolation. In fact, DEEP-BO consistently provided the top, or at least close to the top, performance over all the benchmark types that we have tested. This indicates that DEEP-BO is a robust solution compared to the existing solutions. The DEEP-BO code is publicly available at <uri>https://github.com/snu-adsl/DEEP-BO</uri>

    Safe Controller Optimization for Quadrotors with Gaussian Processes

    Full text link
    One of the most fundamental problems when designing controllers for dynamic systems is the tuning of the controller parameters. Typically, a model of the system is used to obtain an initial controller, but ultimately the controller parameters must be tuned manually on the real system to achieve the best performance. To avoid this manual tuning step, methods from machine learning, such as Bayesian optimization, have been used. However, as these methods evaluate different controller parameters on the real system, safety-critical system failures may happen. In this paper, we overcome this problem by applying, for the first time, a recently developed safe optimization algorithm, SafeOpt, to the problem of automatic controller parameter tuning. Given an initial, low-performance controller, SafeOpt automatically optimizes the parameters of a control law while guaranteeing safety. It models the underlying performance measure as a Gaussian process and only explores new controller parameters whose performance lies above a safe performance threshold with high probability. Experimental results on a quadrotor vehicle indicate that the proposed method enables fast, automatic, and safe optimization of controller parameters without human intervention.Comment: IEEE International Conference on Robotics and Automation, 2016. 6 pages, 4 figures. A video of the experiments can be found at http://tiny.cc/icra16_video . A Python implementation of the algorithm is available at https://github.com/befelix/SafeOp

    Practical Bayesian Optimization of Machine Learning Algorithms

    Full text link
    Machine learning algorithms frequently require careful tuning of model hyperparameters, regularization terms, and optimization parameters. Unfortunately, this tuning is often a "black art" that requires expert experience, unwritten rules of thumb, or sometimes brute-force search. Much more appealing is the idea of developing automatic approaches which can optimize the performance of a given learning algorithm to the task at hand. In this work, we consider the automatic tuning problem within the framework of Bayesian optimization, in which a learning algorithm's generalization performance is modeled as a sample from a Gaussian process (GP). The tractable posterior distribution induced by the GP leads to efficient use of the information gathered by previous experiments, enabling optimal choices about what parameters to try next. Here we show how the effects of the Gaussian process prior and the associated inference procedure can have a large impact on the success or failure of Bayesian optimization. We show that thoughtful choices can lead to results that exceed expert-level performance in tuning machine learning algorithms. We also describe new algorithms that take into account the variable cost (duration) of learning experiments and that can leverage the presence of multiple cores for parallel experimentation. We show that these proposed algorithms improve on previous automatic procedures and can reach or surpass human expert-level optimization on a diverse set of contemporary algorithms including latent Dirichlet allocation, structured SVMs and convolutional neural networks

    Automatic LQR Tuning Based on Gaussian Process Global Optimization

    Full text link
    This paper proposes an automatic controller tuning framework based on linear optimal control combined with Bayesian optimization. With this framework, an initial set of controller gains is automatically improved according to a pre-defined performance objective evaluated from experimental data. The underlying Bayesian optimization algorithm is Entropy Search, which represents the latent objective as a Gaussian process and constructs an explicit belief over the location of the objective minimum. This is used to maximize the information gain from each experimental evaluation. Thus, this framework shall yield improved controllers with fewer evaluations compared to alternative approaches. A seven-degree-of-freedom robot arm balancing an inverted pole is used as the experimental demonstrator. Results of a two- and four-dimensional tuning problems highlight the method's potential for automatic controller tuning on robotic platforms.Comment: 8 pages, 5 figures, to appear in IEEE 2016 International Conference on Robotics and Automation. Video demonstration of the experiments available at https://am.is.tuebingen.mpg.de/publications/marco_icra_201
    corecore