41,175 research outputs found

    Unconstrained Face Verification using Deep CNN Features

    Full text link
    In this paper, we present an algorithm for unconstrained face verification based on deep convolutional features and evaluate it on the newly released IARPA Janus Benchmark A (IJB-A) dataset. The IJB-A dataset includes real-world unconstrained faces from 500 subjects with full pose and illumination variations which are much harder than the traditional Labeled Face in the Wild (LFW) and Youtube Face (YTF) datasets. The deep convolutional neural network (DCNN) is trained using the CASIA-WebFace dataset. Extensive experiments on the IJB-A dataset are provided

    Tracking by Prediction: A Deep Generative Model for Mutli-Person localisation and Tracking

    Full text link
    Current multi-person localisation and tracking systems have an over reliance on the use of appearance models for target re-identification and almost no approaches employ a complete deep learning solution for both objectives. We present a novel, complete deep learning framework for multi-person localisation and tracking. In this context we first introduce a light weight sequential Generative Adversarial Network architecture for person localisation, which overcomes issues related to occlusions and noisy detections, typically found in a multi person environment. In the proposed tracking framework we build upon recent advances in pedestrian trajectory prediction approaches and propose a novel data association scheme based on predicted trajectories. This removes the need for computationally expensive person re-identification systems based on appearance features and generates human like trajectories with minimal fragmentation. The proposed method is evaluated on multiple public benchmarks including both static and dynamic cameras and is capable of generating outstanding performance, especially among other recently proposed deep neural network based approaches.Comment: To appear in IEEE Winter Conference on Applications of Computer Vision (WACV), 201

    Dropout Sampling for Robust Object Detection in Open-Set Conditions

    Full text link
    Dropout Variational Inference, or Dropout Sampling, has been recently proposed as an approximation technique for Bayesian Deep Learning and evaluated for image classification and regression tasks. This paper investigates the utility of Dropout Sampling for object detection for the first time. We demonstrate how label uncertainty can be extracted from a state-of-the-art object detection system via Dropout Sampling. We evaluate this approach on a large synthetic dataset of 30,000 images, and a real-world dataset captured by a mobile robot in a versatile campus environment. We show that this uncertainty can be utilized to increase object detection performance under the open-set conditions that are typically encountered in robotic vision. A Dropout Sampling network is shown to achieve a 12.3% increase in recall (for the same precision score as a standard network) and a 15.1% increase in precision (for the same recall score as the standard network).Comment: to appear in IEEE International Conference on Robotics and Automation 2018 (ICRA 2018
    corecore