27 research outputs found

    Learning Dynamic Robot-to-Human Object Handover from Human Feedback

    Full text link
    Object handover is a basic, but essential capability for robots interacting with humans in many applications, e.g., caring for the elderly and assisting workers in manufacturing workshops. It appears deceptively simple, as humans perform object handover almost flawlessly. The success of humans, however, belies the complexity of object handover as collaborative physical interaction between two agents with limited communication. This paper presents a learning algorithm for dynamic object handover, for example, when a robot hands over water bottles to marathon runners passing by the water station. We formulate the problem as contextual policy search, in which the robot learns object handover by interacting with the human. A key challenge here is to learn the latent reward of the handover task under noisy human feedback. Preliminary experiments show that the robot learns to hand over a water bottle naturally and that it adapts to the dynamics of human motion. One challenge for the future is to combine the model-free learning algorithm with a model-based planning approach and enable the robot to adapt over human preferences and object characteristics, such as shape, weight, and surface texture.Comment: Appears in the Proceedings of the International Symposium on Robotics Research (ISRR) 201

    Rethinking the Discount Factor in Reinforcement Learning: A Decision Theoretic Approach

    Full text link
    Reinforcement learning (RL) agents have traditionally been tasked with maximizing the value function of a Markov decision process (MDP), either in continuous settings, with fixed discount factor γ<1\gamma < 1, or in episodic settings, with γ=1\gamma = 1. While this has proven effective for specific tasks with well-defined objectives (e.g., games), it has never been established that fixed discounting is suitable for general purpose use (e.g., as a model of human preferences). This paper characterizes rationality in sequential decision making using a set of seven axioms and arrives at a form of discounting that generalizes traditional fixed discounting. In particular, our framework admits a state-action dependent "discount" factor that is not constrained to be less than 1, so long as there is eventual long run discounting. Although this broadens the range of possible preference structures in continuous settings, we show that there exists a unique "optimizing MDP" with fixed γ<1\gamma < 1 whose optimal value function matches the true utility of the optimal policy, and we quantify the difference between value and utility for suboptimal policies. Our work can be seen as providing a normative justification for (a slight generalization of) Martha White's RL task formalism (2017) and other recent departures from the traditional RL, and is relevant to task specification in RL, inverse RL and preference-based RL.Comment: 8 pages + 1 page supplement. In proceedings of AAAI 2019. Slides, poster and bibtex available at https://silviupitis.com/#rethinking-the-discount-factor-in-reinforcement-learning-a-decision-theoretic-approac

    Deep reinforcement learning from human preferences

    Full text link
    For sophisticated reinforcement learning (RL) systems to interact usefully with real-world environments, we need to communicate complex goals to these systems. In this work, we explore goals defined in terms of (non-expert) human preferences between pairs of trajectory segments. We show that this approach can effectively solve complex RL tasks without access to the reward function, including Atari games and simulated robot locomotion, while providing feedback on less than one percent of our agent's interactions with the environment. This reduces the cost of human oversight far enough that it can be practically applied to state-of-the-art RL systems. To demonstrate the flexibility of our approach, we show that we can successfully train complex novel behaviors with about an hour of human time. These behaviors and environments are considerably more complex than any that have been previously learned from human feedback
    corecore