3,404 research outputs found

    A Bayesian Approach to Graphical Record Linkage and De-duplication

    Full text link
    We propose an unsupervised approach for linking records across arbitrarily many files, while simultaneously detecting duplicate records within files. Our key innovation involves the representation of the pattern of links between records as a bipartite graph, in which records are directly linked to latent true individuals, and only indirectly linked to other records. This flexible representation of the linkage structure naturally allows us to estimate the attributes of the unique observable people in the population, calculate transitive linkage probabilities across records (and represent this visually), and propagate the uncertainty of record linkage into later analyses. Our method makes it particularly easy to integrate record linkage with post-processing procedures such as logistic regression, capture-recapture, etc. Our linkage structure lends itself to an efficient, linear-time, hybrid Markov chain Monte Carlo algorithm, which overcomes many obstacles encountered by previously record linkage approaches, despite the high-dimensional parameter space. We illustrate our method using longitudinal data from the National Long Term Care Survey and with data from the Italian Survey on Household and Wealth, where we assess the accuracy of our method and show it to be better in terms of error rates and empirical scalability than other approaches in the literature.Comment: 39 pages, 8 figures, 8 tables. Longer version of arXiv:1403.0211, In press, Journal of the American Statistical Association: Theory and Methods (2015

    Mutual information based clustering of market basket data for profiling users

    Get PDF
    Attraction and commercial success of web sites depend heavily on the additional values visitors may find. Here, individual, automatically obtained and maintained user profiles are the key for user satisfaction. This contribution shows for the example of a cooking information site how user profiles might be obtained using category information provided by cooking recipes. It is shown that metrical distance functions and standard clustering procedures lead to erroneous results. Instead, we propose a new mutual information based clustering approach and outline its implications for the example of user profiling

    A Taxonomy of Big Data for Optimal Predictive Machine Learning and Data Mining

    Full text link
    Big data comes in various ways, types, shapes, forms and sizes. Indeed, almost all areas of science, technology, medicine, public health, economics, business, linguistics and social science are bombarded by ever increasing flows of data begging to analyzed efficiently and effectively. In this paper, we propose a rough idea of a possible taxonomy of big data, along with some of the most commonly used tools for handling each particular category of bigness. The dimensionality p of the input space and the sample size n are usually the main ingredients in the characterization of data bigness. The specific statistical machine learning technique used to handle a particular big data set will depend on which category it falls in within the bigness taxonomy. Large p small n data sets for instance require a different set of tools from the large n small p variety. Among other tools, we discuss Preprocessing, Standardization, Imputation, Projection, Regularization, Penalization, Compression, Reduction, Selection, Kernelization, Hybridization, Parallelization, Aggregation, Randomization, Replication, Sequentialization. Indeed, it is important to emphasize right away that the so-called no free lunch theorem applies here, in the sense that there is no universally superior method that outperforms all other methods on all categories of bigness. It is also important to stress the fact that simplicity in the sense of Ockham's razor non plurality principle of parsimony tends to reign supreme when it comes to massive data. We conclude with a comparison of the predictive performance of some of the most commonly used methods on a few data sets.Comment: 18 pages, 2 figures 3 table

    PRESISTANT: Learning based assistant for data pre-processing

    Get PDF
    Data pre-processing is one of the most time consuming and relevant steps in a data analysis process (e.g., classification task). A given data pre-processing operator (e.g., transformation) can have positive, negative or zero impact on the final result of the analysis. Expert users have the required knowledge to find the right pre-processing operators. However, when it comes to non-experts, they are overwhelmed by the amount of pre-processing operators and it is challenging for them to find operators that would positively impact their analysis (e.g., increase the predictive accuracy of a classifier). Existing solutions either assume that users have expert knowledge, or they recommend pre-processing operators that are only "syntactically" applicable to a dataset, without taking into account their impact on the final analysis. In this work, we aim at providing assistance to non-expert users by recommending data pre-processing operators that are ranked according to their impact on the final analysis. We developed a tool PRESISTANT, that uses Random Forests to learn the impact of pre-processing operators on the performance (e.g., predictive accuracy) of 5 different classification algorithms, such as J48, Naive Bayes, PART, Logistic Regression, and Nearest Neighbor. Extensive evaluations on the recommendations provided by our tool, show that PRESISTANT can effectively help non-experts in order to achieve improved results in their analytical tasks

    Distributed Correlation-Based Feature Selection in Spark

    Get PDF
    CFS (Correlation-Based Feature Selection) is an FS algorithm that has been successfully applied to classification problems in many domains. We describe Distributed CFS (DiCFS) as a completely redesigned, scalable, parallel and distributed version of the CFS algorithm, capable of dealing with the large volumes of data typical of big data applications. Two versions of the algorithm were implemented and compared using the Apache Spark cluster computing model, currently gaining popularity due to its much faster processing times than Hadoop's MapReduce model. We tested our algorithms on four publicly available datasets, each consisting of a large number of instances and two also consisting of a large number of features. The results show that our algorithms were superior in terms of both time-efficiency and scalability. In leveraging a computer cluster, they were able to handle larger datasets than the non-distributed WEKA version while maintaining the quality of the results, i.e., exactly the same features were returned by our algorithms when compared to the original algorithm available in WEKA.Comment: 25 pages, 5 figure
    corecore