70,467 research outputs found

    cISP: A Speed-of-Light Internet Service Provider

    Full text link
    Low latency is a requirement for a variety of interactive network applications. The Internet, however, is not optimized for latency. We thus explore the design of cost-effective wide-area networks that move data over paths very close to great-circle paths, at speeds very close to the speed of light in vacuum. Our cISP design augments the Internet's fiber with free-space wireless connectivity. cISP addresses the fundamental challenge of simultaneously providing low latency and scalable bandwidth, while accounting for numerous practical factors ranging from transmission tower availability to packet queuing. We show that instantiations of cISP across the contiguous United States and Europe would achieve mean latencies within 5% of that achievable using great-circle paths at the speed of light, over medium and long distances. Further, we estimate that the economic value from such networks would substantially exceed their expense

    The Quest for Bandwidth Estimation Techniques for large-scale Distributed Systems

    Get PDF
    In recent years the research community has developed many techniques to estimate the end-to-end available bandwidth of an Internet path. This important metric has been proposed for use in several distributed systems and, more recently, has even been considered to improve the congestion control mechanism of TCP. Thus, it has been suggested that some existing estimation techniques could be used for this purpose. However, existing tools were not designed for large-scale deployments and were mostly validated in controlled settings, considering only one measurement running at a time. In this paper, we argue that current tools, while offering good estimates when used alone, might not work in large-scale systems where several estimations severely interfere with each other. We analyze the properties of the measurement paradigms employed today and discuss their functioning, study their overhead and analyze their interference. Our testbed results show that current techniques are insufficient as they are. Finally, we will discuss and propose some principles that should be taken into account for including available bandwidth measurements in large-scale distributed systems. 1

    Evaluation, Modeling and Optimization of Coverage Enhancement Methods of NB-IoT

    Get PDF
    Narrowband Internet of Things (NB-IoT) is a new Low Power Wide Area Network (LPWAN) technology released by 3GPP. The primary goals of NB-IoT are improved coverage, massive capacity, low cost, and long battery life. In order to improve coverage, NB-IoT has promising solutions, such as increasing transmission repetitions, decreasing bandwidth, and adapting the Modulation and Coding Scheme (MCS). In this paper, we present an implementation of coverage enhancement features of NB-IoT in NS-3, an end-to-end network simulator. The resource allocation and link adaptation in NS-3 are modified to comply with the new features of NB-IoT. Using the developed simulation framework, the influence of the new features on network reliability and latency is evaluated. Furthermore, an optimal hybrid link adaptation strategy based on all three features is proposed. To achieve this, we formulate an optimization problem that has an objective function based on latency, and constraint based on the Signal to Noise Ratio (SNR). Then, we propose several algorithms to minimize latency and compare them with respect to accuracy and speed. The best hybrid solution is chosen and implemented in the NS-3 simulator by which the latency formulation is verified. The numerical results show that the proposed optimization algorithm for hybrid link adaptation is eight times faster than the exhaustive search approach and yields similar latency
    • …
    corecore