201 research outputs found

    Error minimising gradients for improving cerebellar model articulation controller performance

    Get PDF
    In motion control applications where the desired trajectory velocity exceeds an actuator’s maximum velocity limitations, large position errors will occur between the desired and actual trajectory responses. In these situations standard control approaches cannot predict the output saturation of the actuator and thus the associated error summation cannot be minimised.An adaptive feedforward control solution such as the Cerebellar Model Articulation Controller (CMAC) is able to provide an inherent level of prediction for these situations, moving the system output in the direction of the excessive desired velocity before actuator saturation occurs. However the pre-empting level of a CMAC is not adaptive, and thus the optimal point in time to start moving the system output in the direction of the excessive desired velocity remains unsolved. While the CMAC can adaptively minimise an actuator’s position error, the minimisation of the summation of error over time created by the divergence of the desired and actual trajectory responses requires an additional adaptive level of control.This thesis presents an improved method of training CMACs to minimise the summation of error over time created when the desired trajectory velocity exceeds the actuator’s maximum velocity limitations. This improved method called the Error Minimising Gradient Controller (EMGC) is able to adaptively modify a CMAC’s training signal so that the CMAC will start to move the output of the system in the direction of the excessive desired velocity with an optimised pre-empting level.The EMGC was originally created to minimise the loss of linguistic information conveyed through an actuated series of concatenated hand sign gestures reproducing deafblind sign language. The EMGC concept however is able to be implemented on any system where the error summation associated with excessive desired velocities needs to be minimised, with the EMGC producing an improved output approximation over using a CMAC alone.In this thesis, the EMGC was tested and benchmarked against a feedforward / feedback combined controller using a CMAC and PID controller. The EMGC was tested on an air-muscle actuator for a variety of situations comprising of a position discontinuity in a continuous desired trajectory. Tested situations included various discontinuity magnitudes together with varying approach and departure gradient profiles.Testing demonstrated that the addition of an EMGC can reduce a situation’s error summation magnitude if the base CMAC controller has not already provided a prior enough pre-empting output in the direction of the situation. The addition of an EMGC to a CMAC produces an improved approximation of reproduced motion trajectories, not only minimising position error for a single sampling instance, but also over time for periodic signals

    Modeling Financial Time Series with Artificial Neural Networks

    Full text link
    Financial time series convey the decisions and actions of a population of human actors over time. Econometric and regressive models have been developed in the past decades for analyzing these time series. More recently, biologically inspired artificial neural network models have been shown to overcome some of the main challenges of traditional techniques by better exploiting the non-linear, non-stationary, and oscillatory nature of noisy, chaotic human interactions. This review paper explores the options, benefits, and weaknesses of the various forms of artificial neural networks as compared with regression techniques in the field of financial time series analysis.CELEST, a National Science Foundation Science of Learning Center (SBE-0354378); SyNAPSE program of the Defense Advanced Research Project Agency (HR001109-03-0001

    Reinforcement Learning Algorithms in Humanoid Robotics

    Get PDF

    A sensory-based adaptive walking control algorithm for variable speed biped robot gaits

    Get PDF
    A balance scheme for handling variable speed gaits was implemented on an experimental biped. The control scheme used pre-planned but adaptive motion sequences in combination with closed loop reactive control. CMAC neural networks were responsible for the adaptive control of side-to-side and front-to-back balance. The biped performance improved with neural network training. The biped was able to walk with variable speed gaits, and to change gait speeds on the fly. The slower gait speeds required statically balanced walking, while the faster speeds required dynamically balanced walking. It was not necessary to distinguish between the two balance modes within the controller. Following training, the biped was able to walk with continuous motion on flat, non-slippery surfaces at forward progression velocities in the range of 21 cm/min to 72 cm/min, with average stride lengths of 6.5 cm

    Metric State Space Reinforcement Learning for a Vision-Capable Mobile Robot

    Full text link
    We address the problem of autonomously learning controllers for vision-capable mobile robots. We extend McCallum's (1995) Nearest-Sequence Memory algorithm to allow for general metrics over state-action trajectories. We demonstrate the feasibility of our approach by successfully running our algorithm on a real mobile robot. The algorithm is novel and unique in that it (a) explores the environment and learns directly on a mobile robot without using a hand-made computer model as an intermediate step, (b) does not require manual discretization of the sensor input space, (c) works in piecewise continuous perceptual spaces, and (d) copes with partial observability. Together this allows learning from much less experience compared to previous methods.Comment: 14 pages, 8 figure

    A survey of machine learning methods applied to anomaly detection on drinking-water quality data

    Get PDF
    Abstract: Traditional machine learning (ML) techniques such as support vector machine, logistic regression, and artificial neural network have been applied most frequently in water quality anomaly detection tasks. This paper presents a review of progress and advances made in detecting anomalies in water quality data using ML techniques. The review encompasses both traditional ML and deep learning (DL) approaches. Our findings indicate that: 1) Generally, DL approaches outperform traditional ML techniques in terms of feature learning accuracy and fewer false positive rates. However, is difficult to make a fair comparison between studies because of different datasets, models and parameters employed. 2) We notice that despite advances made and the advantages of the extreme learning machine (ELM), application of ELM is sparsely exploited in this domain. This study also proposes a hybrid DL-ELM framework as a possible solution that could be investigated further and used to detect anomalies in water quality data

    Autonomic management of virtualized resources in cloud computing

    Get PDF
    The last five years have witnessed a rapid growth of cloud computing in business, governmental and educational IT deployment. The success of cloud services depends critically on the effective management of virtualized resources. A key requirement of cloud management is the ability to dynamically match resource allocations to actual demands, To this end, we aim to design and implement a cloud resource management mechanism that manages underlying complexity, automates resource provisioning and controls client-perceived quality of service (QoS) while still achieving resource efficiency. The design of an automatic resource management centers on two questions: when to adjust resource allocations and how much to adjust. In a cloud, applications have different definitions on capacity and cloud dynamics makes it difficult to determine a static resource to performance relationship. In this dissertation, we have proposed a generic metric that measures application capacity, designed model-independent and adaptive approaches to manage resources and built a cloud management system scalable to a cluster of machines. To understand web system capacity, we propose to use a metric of productivity index (PI), which is defined as the ratio of yield to cost, to measure the system processing capability online. PI is a generic concept that can be applied to different levels to monitor system progress in order to identify if more capacity is needed. We applied the concept of PI to the problem of overload prevention in multi-tier websites. The overload predictor built on the PI metric shows more accurate and responsive overload prevention compared to conventional approaches. To address the issue of the lack of accurate server model, we propose a model-independent fuzzy control based approach for CPU allocation. For adaptive and stable control performance, we embed the controller with self-tuning output amplification and flexible rule selection. Finally, we build a QoS provisioning framework that supports multi-objective QoS control and service differentiation. Experiments on a virtual cluster with two service classes show the effectiveness of our approach in both performance and power control. To address the problems of complex interplay between resources and process delays in fine-grained multi-resource allocation, we consider capacity management as a decision-making problem and employ reinforcement learning (RL) to optimize the process. The optimization depends on the trial-and-error interactions with the cloud system. In order to improve the initial management performance, we propose a model-based RL algorithm. The neural network based environment model, which is learned from previous management history, generates simulated resource allocations for the RL agent. Experiment results on heterogeneous applications show that our approach makes efficient use of limited interactions and find near optimal resource configurations within 7 steps. Finally, we present a distributed reinforcement learning approach to the cluster-wide cloud resource management. We decompose the cluster-wide resource allocation problem into sub-problems concerning individual VM resource configurations. The cluster-wide allocation is optimized if individual VMs meet their SLA with a high resource utilization. For scalability, we develop an efficient reinforcement learning approach with continuous state space. For adaptability, we use VM low-level runtime statistics to accommodate workload dynamics. Prototyped in a iBalloon system, the distributed learning approach successfully manages 128 VMs on a 16-node close correlated cluster

    Intelligent approaches in locomotion - a review

    Get PDF

    The Journal of Conventional Weapons Destruction Issue 27.2

    Get PDF
    Updates on recent enhancements to IMAS. Food security and its connection to mine action as it applies to Ukraine. Digital EORE as a small NGO in mine action. A case study on moving beyond do no harm in environmental mainstreaming in mine action. Efforts of JICA and CMAC in fostering South-South cooperation in mine action. UAV Lidar imaging in mine action to detect and map minefields in Angola. Land disputes and rights in mine action. Computer vision detection of explosive ordnance

    A survey of the application of soft computing to investment and financial trading

    Get PDF
    • …
    corecore