10 research outputs found

    IP and ATM integration: A New paradigm in multi-service internetworking

    Get PDF
    ATM is a widespread technology adopted by many to support advanced data communication, in particular efficient Internet services provision. The expected challenges of multimedia communication together with the increasing massive utilization of IP-based applications urgently require redesign of networking solutions in terms of both new functionalities and enhanced performance. However, the networking context is affected by so many changes, and to some extent chaotic growth, that any approach based on a structured and complex top-down architecture is unlikely to be applicable. Instead, an approach based on finding out the best match between realistic service requirements and the pragmatic, intelligent use of technical opportunities made available by the product market seems more appropriate. By following this approach, innovations and improvements can be introduced at different times, not necessarily complying with each other according to a coherent overall design. With the aim of pursuing feasible innovations in the different networking aspects, we look at both IP and ATM internetworking in order to investigating a few of the most crucial topics/ issues related to the IP and ATM integration perspective. This research would also address various means of internetworking the Internet Protocol (IP) and Asynchronous Transfer Mode (ATM) with an objective of identifying the best possible means of delivering Quality of Service (QoS) requirements for multi-service applications, exploiting the meritorious features that IP and ATM have to offer. Although IP and ATM often have been viewed as competitors, their complementary strengths and limitations from a natural alliance that combines the best aspects of both the technologies. For instance, one limitation of ATM networks has been the relatively large gap between the speed of the network paths and the control operations needed to configure those data paths to meet changing user needs. IP\u27s greatest strength, on the other hand, is the inherent flexibility and its capacity to adapt rapidly to changing conditions. These complementary strengths and limitations make it natural to combine IP with ATM to obtain the best that each has to offer. Over time many models and architectures have evolved for IP/ATM internetworking and they have impacted the fundamental thinking in internetworking IP and ATM. These technologies, architectures, models and implementations will be reviewed in greater detail in addressing possible issues in integrating these architectures s in a multi-service, enterprise network. The objective being to make recommendations as to the best means of interworking the two in exploiting the salient features of one another to provide a faster, reliable, scalable, robust, QoS aware network in the most economical manner. How IP will be carried over ATM when a commercial worldwide ATM network is deployed is not addressed and the details of such a network still remain in a state of flux to specify anything concrete. Our research findings culminated with a strong recommendation that the best model to adopt, in light of the impending integrated service requirements of future multi-service environments, is an ATM core with IP at the edges to realize the best of both technologies in delivering QoS guarantees in a seamless manner to any node in the enterprise

    Analysis of Inter-Domain Routing Requirements and History

    Full text link

    Cross-layer energy optimisation of routing protocols in wireless sensor networks

    Get PDF
    Recent technological developments in embedded systems have led to the emergence of a new class of networks, known asWireless Sensor Networks (WSNs), where individual nodes cooperate wirelessly with each other with the goal of sensing and interacting with the environment.Many routing protocols have been developed tomeet the unique and challenging characteristics of WSNs (notably very limited power resources to sustain an expected lifetime of perhaps years, and the restricted computation, storage and communication capabilities of nodes that are nonetheless required to support large networks and diverse applications). No standards for routing have been developed yet for WSNs, nor has any protocol gained a dominant position among the research community. Routing has a significant influence on the overall WSN lifetime, and providing an energy efficient routing protocol remains an open problem. This thesis addresses the issue of designing WSN routing methods that feature energy efficiency. A common time reference across nodes is required in mostWSN applications. It is needed, for example, to time-stamp sensor samples and for duty cycling of nodes. Alsomany routing protocols require that nodes communicate according to some predefined schedule. However, independent distribution of the time information, without considering the routing algorithm schedule or network topology may lead to a failure of the synchronisation protocol. This was confirmed empirically, and was shown to result in loss of connectivity. This can be avoided by integrating the synchronisation service into the network layer with a so-called cross-layer approach. This approach introduces interactions between the layers of a conventional layered network stack, so that the routing layer may share information with other layers. I explore whether energy efficiency can be enhanced through the use of cross-layer optimisations and present three novel cross-layer routing algorithms. The first protocol, designed for hierarchical, cluster based networks and called CLEAR (Cross Layer Efficient Architecture for Routing), uses the routing algorithm to distribute time information which can be used for efficient duty cycling of nodes. The second method - called RISS (Routing Integrated Synchronization Service) - integrates time synchronization into the network layer and is designed to work well in flat, non-hierarchical network topologies. The third method - called SCALE (Smart Clustering Adapted LEACH) - addresses the influence of the intra-cluster topology on the energy dissipation of nodes. I also investigate the impact of the hop distance on network lifetime and propose a method of determining the optimal location of the relay node (the node through which data is routed in a two-hop network). I also address the problem of predicting the transition region (the zone separating the region where all packets can be received and that where no data can be received) and I describe a way of preventing the forwarding of packets through relays belonging in this transition region. I implemented and tested the performance of these solutions in simulations and also deployed these routing techniques on sensor nodes using TinyOS. I compared the average power consumption of the nodes and the precision of time synchronization with the corresponding parameters of a number of existing algorithms. All proposed schemes extend the network lifetime and due to their lightweight architecture they are very efficient on WSN nodes with constrained resources. Hence it is recommended that a cross-layer approach should be a feature of any routing algorithm for WSNs

    Performance evaluation of ETX on grid based wireless mesh networks

    Full text link
    In the past few years Wireless Mesh Networks (WMNs) have developed as a promising technology to provide flexible and low-cost broadband network services. The Expected Transmission Count (ETX) routing metric has been put forward recently as an advanced routing metric to provide high QoS for static WMNs. Most previous research in this area suggests that ETX outperforms other routing metrics in throughput and efficiency. However, it has been determined that ETX is not immune to load sensitivity and route oscillations in a single radio environment. Route oscillations refer to the situation where packet transmission switches between two or more routes due to congestion. This has the effect of degrading performance of the network, as the routing protocol may select a non optimal path. In this thesis we avoided the route oscillation problem by forcing data transmission on fixed routes. This can be implemented in the AODV (Ad hoc On-demand Distance Vector) protocol by disabling both error messages and periodic updating messages (the HELLO scheme). However, a critical factor for our approach is that ETX must determine a high quality initial route in AODV. This thesis investigates whether the ETX metric improves initial route selection in AODV compared to the HOPS metric in two representative client-server applications: the Traffic Control Network (TCN) and the Video Stream (VS) network. We evaluate the ETX and HOPS metrics in a range of scenarios which possess different link qualities and different traffic loads. We find the ETX metric greatly improves initial route selection in AODV compared to the HOPS in the network in which only single flow exists. For networks in which there are multiple simultaneous flows, ETX behaves similar to HOPS in initial route selection. Based on these results, we find the solution of route stabilization to route oscillations in the context of ETX is only useful in the single flow case. To address this problem, we propose a modified solution of repeatedly broadcasting RREQ (Route Request) packets. Simulation results show that our modified solution allows ETX to be useful in the initial route selection in both single flow and multiple simultaneous flows cases

    Proactive techniques for correct and predictable Internet routing

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2006.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 185-193).The Internet is composed of thousands of autonomous, competing networks that exchange reachability information using an interdomain routing protocol. Network operators must continually reconfigure the routing protocols to realize various economic and performance goals. Unfortunately, there is no systematic way to predict how the configuration will affect the behavior of the routing protocol or to determine whether the routing protocol will operate correctly at all. This dissertation develops techniques to reason about the dynamic behavior of Internet routing, based on static analysis of the router configurations, before the protocol ever runs on a live network. Interdomain routing offers each independent network tremendous flexibility in configuring the routing protocols to accomplish various economic and performance tasks. Routing configurations are complex, and writing them is similar to writing a distributed program; the (unavoidable) consequence of configuration complexity is the potential for incorrect and unpredictable behavior. These mistakes and unintended interactions lead to routing faults, which disrupt end-to-end connectivity. Network operators writing configurations make mistakes; they may also specify policies that interact in unexpected ways with policies in other networks.(cont.) To avoid disrupting network connectivity and degrading performance, operators would benefit from being able to determine the effects of configuration changes before deploying them on a live network; unfortunately, the status quo provides them no opportunity to do so. This dissertation develops the techniques to achieve this goal of proactively ensuring correct and predictable Internet routing. The first challenge in guaranteeing correct and predictable behavior from a routing protocol is defining a specification for correct behavior. We identify three important aspects of correctness-path visibility, route validity, and safety-and develop proactive techniques for guaranteeing that these properties hold. Path visibility states that the protocol disseminates information about paths in the topology; route validity says that this information actually corresponds to those paths; safety says that the protocol ultimately converges to a stable outcome, implying that routing updates actually correspond to topological changes. Armed with this correctness specification, we tackle the second challenge: analyzing routing protocol configurations that may be distributed across hundreds of routers.(cont.) We develop techniques to check whether a routing protocol satisfies the correctness specification within a single independently operated network. We find that much of the specification can be checked with static configuration analysis alone. We present examples of real-world routing faults and propose a systematic framework to classify, detect, correct, and prevent them. We describe the design and implementation of rcc ("router configuration checker"), a tool that uses static configuration analysis to enable network operators to debug configurations before deploying them in an operational network. We have used rcc to detect faults in 17 different networks, including several nationwide Internet service providers (ISPs). To date, rcc has been downloaded by over seventy network operators. A critical aspect of guaranteeing correct and predictable Internet routing is ensuring that the interactions of the configurations across multiple networks do not violate the correctness specification. Guaranteeing safety is challenging because each network sets its policies independently, and these policies may conflict. Using a formal model of today's Internet routing protocol, we derive conditions to guarantee that unintended policy interactions will never cause the routing protocol to oscillate.(cont.) This dissertation also takes steps to make Internet routing more predictable. We present algorithms that help network operators predict how a set of distributed router configurations within a single network will affect the flow of traffic through that network. We describe a tool based on these algorithms that exploits the unique characteristics of routing data to reduce computational overhead. Using data from a large ISP, we show that this tool correctly computes BGP routing decisions and has a running time that is acceptable for many tasks, such as traffic engineering and capacity planning.by Nicholas Greer Feamster.Ph.D

    Millora de la gestió d’una xarxa WiFi: Guifi.net

    Get PDF
    Aquest estudi presenta la situació d'una associació d'usuaris anomenada Guifi.net. Els integrants d'aquesta comunitat han construït una xarxa WLAN oberta amb quasi set-cents punts de xarxa, una gestió dinàmica i una eina d'automatització per a nous nodes. Tanmateix, la confiança en les tecnologies basades en l'estàndard 802.11 ha implicat una expansió sorprenent el seu ús. Així doncs, el creixement de Guifi.net ha estat elevat, incidint en el rendiment d'alguns elements. Com a conseqüència del creixement de la xarxa els usuaris estan comencen a experimentar una disminució del rendiment i disponibilitat. L'estudi que es presenta té com a principal objectiu solucionar aquesta problemàtica emergent a Guifi.net, a més de configurar una xarxa més robusta i escalable. Durant la realització d'aquest projecte s'han testejat diversos protocols d'encaminament en escenaris concrets per veure el seu funcionament i extreure configuracions més eficients. L'entorn utilitzat en tot moment ha estat fidel a Guifi.net, des de la utilització del mateix hardware/software fins a les topologies utilitzades. Els coneixements adquirits s'han aplicat al cas concret de la xarxa oberta Guifi.net. Així doncs, es realitzen una sèrie de recomanacions per millorar la gestió de l'encaminament de la xarxa. Durant aquest estudi s'ha mostrat especial interès en el rendiment d'aquests protocols i tots els seus mecanismes d'escalabilitat, també aplicats al cas de Guifi.net

    A BGP/IDRP Route Server alternative to a full mesh routing

    No full text
    corecore