2 research outputs found

    Design and Implementation of a Low‐Power Wireless Respiration Monitoring Sensor

    Get PDF
    Wireless devices for monitoring of respiration activities can play a major role in advancing modern home-based health care applications. Existing methods for respiration monitoring require special algorithms and high precision filters to eliminate noise and other motion artifacts. These necessitate additional power consuming circuitry for further signal conditioning. This dissertation is particularly focused on a novel approach of respiration monitoring based on a PVDF-based pyroelectric transducer. Low-power, low-noise, and fully integrated charge amplifiers are designed to serve as the front-end amplifier of the sensor to efficiently convert the charge generated by the transducer into a proportional voltage signal. To transmit the respiration data wirelessly, a lowpower transmitter design is crucial. This energy constraint motivates the exploration of the design of a duty-cycled transmitter, where the radio is designed to be turned off most of the time and turned on only for a short duration of time. Due to its inherent duty-cycled nature, impulse radio ultra-wideband (IR-UWB) transmitter is an ideal candidate for the implementation of a duty-cycled radio. To achieve better energy efficiency and longer battery lifetime a low-power low-complexity OOK (on-off keying) based impulse radio ultra-wideband (IR-UWB) transmitter is designed and implemented using standard CMOS process. Initial simulation and test results exhibit a promising advancement towards the development of an energy-efficient wireless sensor for monitoring of respiration activities

    Feature Papers in Electronic Materials Section

    Get PDF
    This book entitled "Feature Papers in Electronic Materials Section" is a collection of selected papers recently published on the journal Materials, focusing on the latest advances in electronic materials and devices in different fields (e.g., power- and high-frequency electronics, optoelectronic devices, detectors, etc.). In the first part of the book, many articles are dedicated to wide band gap semiconductors (e.g., SiC, GaN, Ga2O3, diamond), focusing on the current relevant materials and devices technology issues. The second part of the book is a miscellaneous of other electronics materials for various applications, including two-dimensional materials for optoelectronic and high-frequency devices. Finally, some recent advances in materials and flexible sensors for bioelectronics and medical applications are presented at the end of the book
    corecore