3 research outputs found

    Hybrid NRZ/Multi-Tone Signaling for High-Speed Low-Power Wireline Transceivers

    Get PDF
    Over the past few decades, incessant growth of Internet networking traffic and High-Performance Computing (HPC) has led to a tremendous demand for data bandwidth. Digital communication technologies combined with advanced integrated circuit scaling trends have enabled the semiconductor and microelectronic industry to dramatically scale the bandwidth of high-loss interfaces such as Ethernet, backplane, and Digital Subscriber Line (DSL). The key to achieving higher bandwidth is to employ equalization technique to compensate the channel impairments such as Inter-Symbol Interference (ISI), crosstalk, and environmental noise. Therefore, todayâs advanced input/outputs (I/Os) has been equipped with sophisticated equalization techniques to push beyond the uncompensated bandwidth of the system. To this end, process scaling has continually increased the data processing capability and improved the I/O performance over the last 15 years. However, since the channel bandwidth has not scaled with the same pace, the required signal processing and equalization circuitry becomes more and more complicated. Thereby, the energy efficiency improvements are largely offset by the energy needed to compensate channel impairments. In this design paradigm, re-thinking about the design strategies in order to not only satisfy the bandwidth performance, but also to improve power-performance becomes an important necessity. It is well known in communication theory that coding and signaling schemes have the potential to provide superior performance over band-limited channels. However, the choice of the optimum data communication algorithm should be considered by accounting for the circuit level power-performance trade-offs. In this thesis we have investigated the application of new algorithm and signaling schemes in wireline communications, especially for communication between microprocessors, memories, and peripherals. A new hybrid NRZ/Multi-Tone (NRZ/MT) signaling method has been developed during the course of this research. The system-level and circuit-level analysis, design, and implementation of the proposed signaling method has been performed in the frame of this work, and the silicon measurement results have proved the efficiency and the robustness of the proposed signaling methodology for wireline interfaces. In the first part of this work, a 7.5 Gb/s hybrid NRZ/MT transceiver (TRX) for multi-drop bus (MDB) memory interfaces is designed and fabricated in 40 nm CMOS technology. Reducing the complexity of the equalization circuitry on the receiver (RX) side, the proposed architecture achieves 1 pJ/bit link efficiency for a MDB channel bearing 45 dB loss at 2.5 GHz. The measurement results of the first prototype confirm that NRZ/MT serial data TRX can offer an energy-efficient solution for MDB memory interfaces. Motivated by the satisfying results of the first prototype, in the second phase of this research we have exploited the properties of multi-tone signaling, especially orthogonality among different sub-bands, to reduce the effect of crosstalk in high-dense wireline interconnects. A four-channel transceiver has been implemented in a standard CMOS 40 nm technology in order to demonstrate the performance of NRZ/MT signaling in presence of high channel loss and strong crosstalk noise. The proposed system achieves 1 pJ/bit power efficiency, while communicating over a MDB memory channel at 36 Gb/s aggregate data rate

    Design of energy efficient high speed I/O interfaces

    Get PDF
    Energy efficiency has become a key performance metric for wireline high speed I/O interfaces. Consequently, design of low power I/O interfaces has garnered large interest that has mostly been focused on active power reduction techniques at peak data rate. In practice, most systems exhibit a wide range of data transfer patterns. As a result, low energy per bit operation at peak data rate does not necessarily translate to overall low energy operation. Therefore, I/O interfaces that can scale their power consumption with data rate requirement are desirable. Rapid on-off I/O interfaces have a potential to scale power with data rate requirements without severely affecting either latency or the throughput of the I/O interface. In this work, we explore circuit techniques for designing rapid on-off high speed wireline I/O interfaces and digital fractional-N PLLs. A burst-mode transmitter suitable for rapid on-off I/O interfaces is presented that achieves 6 ns turn-on time by utilizing a fast frequency settling ring oscillator in digital multiplying delay-locked loop and a rapid on-off biasing scheme for current mode output driver. Fabricated in 90 nm CMOS process, the prototype achieves 2.29 mW/Gb/s energy efficiency at peak data rate of 8 Gb/s. A 125X (8 Gb/s to 64 Mb/s) change in effective data rate results in 67X (18.29 mW to 0.27 mW) change in transmitter power consumption corresponding to only 2X (2.29 mW/Gb/s to 4.24 mW/Gb/s) degradation in energy efficiency for 32-byte long data bursts. We also present an analytical bit error rate (BER) computation technique for this transmitter under rapid on-off operation, which uses MDLL settling measurement data in conjunction with always-on transmitter measurements. This technique indicates that the BER bathtub width for 10^(−12) BER is 0.65 UI and 0.72 UI during rapid on-off operation and always-on operation, respectively. Next, a pulse response estimation-based technique is proposed enabling burst-mode operation for baud-rate sampling receivers that operate over high loss channels. Such receivers typically employ discrete time equalization to combat inter-symbol interference. Implementation details are provided for a receiver chip, fabricated in 65nm CMOS technology, that demonstrates efficacy of the proposed technique. A low complexity pulse response estimation technique is also presented for low power receivers that do not employ discrete time equalizers. We also present techniques for implementation of highly digital fractional-N PLL employing a phase interpolator based fractional divider to improve the quantization noise shaping properties of a 1-bit ∆Σ frequency-to-digital converter. Fabricated in 65nm CMOS process, the prototype calibration-free fractional-N Type-II PLL employs the proposed frequency-to-digital converter in place of a high resolution time-to-digital converter and achieves 848 fs rms integrated jitter (1 kHz-30 MHz) and -101 dBc/Hz in-band phase noise while generating 5.054 GHz output from 31.25 MHz input

    A LPDDR4 MEMORY CONTROLLER DESIGN WITH EYE CENTER DETECTION ALGORITHM

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2016. 2. 김수환.The demand for higher bandwidth with reduced power consumption in mobile memory is increasing. In this thesis, architecture of the LPDDR4 memory controller, operated with a LPDDR4 memory, is proposed and designed, and efficient training algorithm, which is appropriate for this architecture, is proposed for memory training and verification. The operation speed range of the LPDDR4 memory specification is from 533Mbps to 4266Mbps, and the LPDDR4 memory controller is designed to support that range of the LPDDR4 memory. The phase-locked loop in the LPDDR4 memory controller is designed to operate between 1333MHz and 2133MHz. To cover the range of the LPDDR4 memory, the selectable frequency divider is used to provide operation clock. The output frequency of the phase-locked loop with divider is from 266MHz to 2133MHz. The delay-locked loop in the LPDDR4 memory controller is designed to operate between 266MHz and 2133MHz with 180˚ phase locking. The delay-locked loop is used each training operation, which is command training, data read and write training. To complete training in each training stage, eye center detection algorithm is used. The circuits for the proposed eye center detection algorithm such as delay line, phase interpolator and reference generator are designed and validated. The proposed 1x2y3x eye center detection algorithm is 23 times faster than conventional two-dimensional eye center detection algorithm and it can be implemented simply. Using 65nm CMOS process, the proposed LPDDR4 memory controller occupies 12mm2. The verification of the LPDDR4 memory controller is performed with commodity LPDDR4 memory. The verification of all training sequence, which is power on, initializing, boot up, command training, write leveling, read training, write training, is performed in this environment. The low voltage swing terminated logic driver and other several functions, including write leveling and data transmission, are verified at 4266Mbps and the entire LPDDR4 memory controller operations from 566Mbps to 1600Mbps are verified. The proposed eye center detection algorithm is verified from 566Mbps to 2843Mbps.CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 INTRODUCTION 5 1.3 THESIS ORGANIZATION 7 CHAPTER 2 LPDDR4 MEMORY CONTROLLER DESIGN 8 2.1 DIFFERENCE BETWEEN LPDDR3 AND LPDDR4 MEMORY 8 2.1.1 ARCHITECTURAL DIFFERENCE BETWEEN LPDDR3 AND LPDDR4 MEMORY 10 2.1.2 SOURCE SYNCHRONOUS MATCHED SCHEME AND UNMATCHED SCHEME 11 2.1.3 LOW VOLTAGE SWING TERMINATED LOGIC DRIVER AND TERMINATION SCHEME 12 2.2 LPDDR4 MEMORY CONTROLLER SPECIFICATION 15 2.3 DESIGN PROCEDURE 18 CHAPTER 3 LPDDR4 MEMORY CONTROLLER ARCHITECTURE BASED ON MEMORY TRAINING 20 3.1 LPDDR4 MEMORY TRAINING SEQUENCE 20 3.2 LPDDR4 MEMORY TRAINING EYE DETECTION ALGORITHM 24 3.2.1 EYE CENTER DETECTION 24 3.2.2 1X2Y3X EYE CENTER DETECTION ALGORITHM 27 3.3. LPDDR4 MEMORY CONTROLLER DESIGN BASED ON MEMORY TRAINING 31 3.3.1 ARCHITECTURE FOR MEMORY BOOT UP AND POWER UP 31 3.3.2 CLOCK PATH ARCHITECTURE AND CLOCK TREE 34 3.3.3 COMMAND TRAINING AND COMMAND PATH ARCHITECTURE 35 3.3.4 WRITE LEVELING AND DATA STROBE TRANSMISSION PATH ARCHITECTURE 39 3.3.5 READ TRAINING AND READ PATH ARCHITECTURE 41 3.3.6 WRITE TRAINING AND WRITE PATH ARCHITECTURE 43 3.3.7 NORMAL READ/WRITE OPERATION AND MARGIN TEST 46 CHAPTER 4 LPDDR4 MEMORY CONTROLLER ARCHITECTURE MODELING AND CIRCUIT DESIGN 48 4.1 OVERALL LPDDR4 MEMORY CONTROLLER ARCHITECTURE MODELING 48 4.2 SIMULATION RESULT OF LPDDR4 MEMORY CONTROLLER MODELING 51 4.3 LPDDR4 MEMORY CONTROLLER CIRCUIT DESIGN 61 4.3.1 PHASE-LOCKED LOOP 61 4.3.2 DELAY-LOCKED LOOP 65 4.3.3 TRANSMITTER OF LPDDR4 MEMORY CONTROLLER: WRITE PATH 70 4.3.4 DE-SERIALIZER WITH CLOCK DOMAIN CROSSING 75 CHAPTER 5 MEASUREMENT RESULT OF LPDDR4 MEMORY CONTROLLER 77 5.1 LPDDR4 MEMORY CONTROLLER MEASUREMENT SETUP 77 5.1.1 LPDDR4 MEMORY CONTROLLER FLOOR PLAN AND LAYOUT 77 5.1.2 PACKAGE AND TEST BOARD 79 5.2 LPDDR4 MEMORY CONTROLLER SUB-BLOCK MEASUREMENT 81 5.2.1 PHASE-LOCKED LOOP 81 5.2.2 DELAY-LOCKED LOOP 83 5.2.3 200PS AND 800PS DELAY LINE 85 5.2.4 VOLTAGE REFERENCE GENERATOR 86 5.2.5 PHASE INTERPOLATOR 87 5.3 LPDDR4 MEMORY SYSTEM OPERATION MEASUREMENT 90 CHAPTER 6 CONCLUSION 93 APPENDIX OPERATION FLOW CHART OF THE PROPOSED LPDDR4 MEMORY CONTROLLER 95 BIBLIOGRAPHY 118 KOREAN ABSTRACT 124Docto
    corecore