3 research outputs found

    A 4.8-μVrms-Noise CMOS-Microelectrode Array With Density-Scalable Active Readout Pixels via Disaggregated Differential Amplifier Implementation

    Get PDF
    We demonstrate a 4.8-μVrms noise microelectrode array (MEA) based on the complementary-metal-oxide-semiconductor active-pixel-sensors readout technique with disaggregated differential amplifier implementation. The circuit elements of the differential amplifier are divided into a readout pixel, a reference pixel, and a column circuit. This disaggregation contributes to the small area of the readout pixel, which is less than 81 μm2. We observed neuron signals around 100 μV with 432 electrodes in a fabricated prototype chip. The implementation has technological feasibility of up to 12-μm-pitch electrode density and 6,912 readout channels for high-spatial resolution mapping of neuron network activity

    Technologies to Study Action Potential Propagation With a Focus on HD-MEAs

    Get PDF
    Axons convey information in neuronal circuits via reliable conduction of action potentials (APs) from the axon initial segment (AIS) to the presynaptic terminals. Recent experimental findings increasingly evidence that the axonal function is not limited to the simple transmission of APs. Advances in subcellular-resolution recording techniques have shown that axons display activity-dependent modulation in spike shape and conduction velocity, which influence synaptic strength and latency. We briefly review here, how recent methodological developments facilitate the understanding of the axon physiology. We included the three most common methods, i.e., genetically encoded voltage imaging (GEVI), subcellular patch-clamp and high-density microelectrode arrays (HD-MEAs). We then describe the potential of using HD-MEAs in studying axonal physiology in more detail. Due to their robustness, amenability to high-throughput and high spatiotemporal resolution, HD-MEAs can provide a direct functional electrical readout of single cells and cellular ensembles at subcellular resolution. HD-MEAs can, therefore, be employed in investigating axonal pathologies, the effects of large-scale genomic interventions (e.g., with RNAi or CRISPR) or in compound screenings. A combination of extracellular microelectrode arrays (MEAs), intracellular microelectrodes and optical imaging may potentially reveal yet unexplored repertoires of axonal functions

    CMOS MULTI-MODAL INTEGRATED SYSTEMS FOR FUTURE BIOELECTRONICS AND BIOSENSORS

    Get PDF
    Cells are the basic structural biological units of all known living organisms. They are highly sophisticated system with thousands of molecules operating in hundreds of pathways to maintain their proper functions, phenotypes, and physiological behaviors. With this scale of complexity, cells often exhibit multi-physiological properties as their cellular fingerprints from external stimulations. In order to further advance the frontiers in bioscience and biotechnologies such as stem cell manufacturing, synthetic biology, and regenerative medicine, it is required to comprehend complex cell physiology of living cells. Therefore, a comprehensive set of technologies is needed to harvest quantitative biological data from given cell samples. Such demands have stimulated extensive research on new bioelectronics and biosensors to characterize their functional information by converting their biological activities to electrical signals. As a result, various bioelectronics and biosensors are reported and employed in many in vivo and in vitro applications. Since sensing electrodes of the devices are physically in touch with biological/chemical samples and record their signals, long-term biocompatibility and chemical/mechanical stability is of paramount importance in numerous biological applications. Furthermore, the devices should achieve high sensitivity/resolution/linearity, large field-of-view (FoV), multi-modal sensing, and real-time monitoring, while maintaining small feature size of devices to use small volume of biological/chemical samples and reduce cost. As a result, My Ph.D research aims to study interfacial electrochemical impedance spectroscopy (EIS) of electrodes with different combination of materials/sizes and to design novel multi-modal sensing/actuation array architectures with CMOS compatible in-house post-processing to address the design challenges of the bioelectronics and biosensors.Ph.D
    corecore