6,465 research outputs found

    Equalization of Third-Order Intermodulation Products in Wideband Direct Conversion Receivers

    Get PDF
    This paper reports a SAW-less direct-conversion receiver which utilizes a mixed-signal feedforward path to regenerate and adaptively cancel IM3 products, thus accomplishing system-level linearization. The receiver system performance is dominated by a custom integrated RF front end implemented in 130-nm CMOS and achieves an uncorrected out-of-band IIP3 of -7.1 dBm under the worst-case UMTS FDD Region 1 blocking specifications. Under IM3 equalization, the receiver achieves an effective IIP3 of +5.3 dBm and meets the UMTS BER sensitivity requirement with 3.7 dB of margin

    A Fully-Integrated Reconfigurable Dual-Band Transceiver for Short Range Wireless Communications in 180 nm CMOS

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.A fully-integrated reconfigurable dual-band (760-960 MHz and 2.4-2.5 GHz) transceiver (TRX) for short range wireless communications is presented. The TRX consists of two individually-optimized RF front-ends for each band and one shared power-scalable analog baseband. The sub-GHz receiver has achieved the maximum 75 dBc 3rd-order harmonic rejection ratio (HRR3) by inserting a Q-enhanced notch filtering RF amplifier (RFA). In 2.4 GHz band, a single-ended-to-differential RFA with gain/phase imbalance compensation is proposed in the receiver. A ΣΔ fractional-N PLL frequency synthesizer with two switchable Class-C VCOs is employed to provide the LOs. Moreover, the integrated multi-mode PAs achieve the output P1dB (OP1dB) of 16.3 dBm and 14.1 dBm with both 25% PAE for sub-GHz and 2.4 GHz bands, respectively. A power-control loop is proposed to detect the input signal PAPR in real-time and flexibly reconfigure the PA's operation modes to enhance the back-off efficiency. With this proposed technique, the PAE of the sub-GHz PA is improved by x3.24 and x1.41 at 9 dB and 3 dB back-off powers, respectively, and the PAE of the 2.4 GHz PA is improved by x2.17 at 6 dB back-off power. The presented transceiver has achieved comparable or even better performance in terms of noise figure, HRR, OP1dB and power efficiency compared with the state-of-the-art.Peer reviewe

    AMiBA Wideband Analog Correlator

    Get PDF
    A wideband analog correlator has been constructed for the Yuan-Tseh Lee Array for Microwave Background Anisotropy. Lag correlators using analog multipliers provide large bandwidth and moderate frequency resolution. Broadband IF distribution, backend signal processing and control are described. Operating conditions for optimum sensitivity and linearity are discussed. From observations, a large effective bandwidth of around 10 GHz has been shown to provide sufficient sensitivity for detecting cosmic microwave background variations.Comment: 28 pages, 23 figures, ApJ in press

    A 0.1–5.0 GHz flexible SDR receiver with digitally assisted calibration in 65 nm CMOS

    Get PDF
    © 2017 Elsevier Ltd. All rights reserved.A 0.1–5.0 GHz flexible software-defined radio (SDR) receiver with digitally assisted calibration is presented, employing a zero-IF/low-IF reconfigurable architecture for both wideband and narrowband applications. The receiver composes of a main-path based on a current-mode mixer for low noise, a high linearity sub-path based on a voltage-mode passive mixer for out-of-band rejection, and a harmonic rejection (HR) path with vector gain calibration. A dual feedback LNA with “8” shape nested inductor structure, a cascode inverter-based TCA with miller feedback compensation, and a class-AB full differential Op-Amp with Miller feed-forward compensation and QFG technique are proposed. Digitally assisted calibration methods for HR, IIP2 and image rejection (IR) are presented to maintain high performance over PVT variations. The presented receiver is implemented in 65 nm CMOS with 5.4 mm2 core area, consuming 9.6–47.4 mA current under 1.2 V supply. The receiver main path is measured with +5 dB m/+5dBm IB-IIP3/OB-IIP3 and +61dBm IIP2. The sub-path achieves +10 dB m/+18dBm IB-IIP3/OB-IIP3 and +62dBm IIP2, as well as 10 dB RF filtering rejection at 10 MHz offset. The HR-path reaches +13 dB m/+14dBm IB-IIP3/OB-IIP3 and 62/66 dB 3rd/5th-order harmonic rejection with 30–40 dB improvement by the calibration. The measured sensitivity satisfies the requirements of DVB-H, LTE, 802.11 g, and ZigBee.Peer reviewedFinal Accepted Versio

    14.6-GHz LiNbO/sub 3/ microdisk photonic self-homodyne RF receiver

    Get PDF
    Nonlinear optical modulation combined with simultaneous photonic and RF resonance in an LiNbO/sub 3/ microdisk modulator is used to create a self-homodyne photonic RF receiver. Carrier and sidebands are mixed in the optical domain, and the modulated optical signal is detected using a photodetector. The photodetector has a bandwidth matched to the baseband signal. It filters out the high-frequency components and generates the baseband photocurrent. Receiver operation is demonstrated by demodulating up to 100-Mb/s digital data from a 14.6-GHz carrier frequency without any high-speed electronic components. A bit error rate of 10/sup -9/ is measured for 10-Mb/s downconverted digital data at -15-dBm received RF power. Preliminary results of employing this photonic RF receiver in a short-distance Ku-band wireless link demonstrate the potential of using high-quality optical microresonators in RF receiver applications

    Full characterization and analysis of a terahertz heterodyne receiver based on a NbN hot electron bolometer

    Get PDF
    We present a complete experimental characterization of a quasioptical twin-slot antenna coupled small area (1.0×0.15 µm^2) NbN hot electron bolometer (HEB) mixer compatible with currently available solid state tunable local oscillator (LO) sources. The required LO power absorbed in the HEB is analyzed in detail and equals only 25 nW. Due to the small HEB volume and wide antenna bandwidth, an unwanted direct detection effect is observed which decreases the apparent sensitivity. Correcting for this effect results in a receiver noise temperature of 700 K at 1.46 THz. The intermediate frequency (IF) gain bandwidth is 2.3 GHz and the IF noise bandwidth is 4 GHz. The single channel receiver stability is limited to 0.2–0.3 s in a 50 MHz bandwidth

    A dual output polarimeter devoted to the study of the Cosmic Microwave Background

    Get PDF
    We have developed a correlation radiometer at 33 GHz devoted to the search for residual polarization of the Cosmic Microwave Background (CMB). The two instruments`s outputs are linear combination of two Stokes Parameters (Q and U or U and V). The instrument is therefore directly sensitive to the polarized component of the radiation (respectively linear and circular). The radiometer has a beam-width oif 7 or 14 deg, but it can be coupled to a telescope increasing the resolution. The expected CMB polarization is at most a part per milion. The polarimeter has been designed to be sensitive to this faint signal, and it has been optimized to improve its long term stability, observing from the ground. In this contribution the performances of the instrument are presented, together with the preliminary test and observations.Comment: 12 pages, 6 figures, in print on the Proc. SPIE Conf. - August 200

    Measuring and Correcting Wind-Induced Pointing Errors of the Green Bank Telescope Using an Optical Quadrant Detector

    Full text link
    Wind-induced pointing errors are a serious concern for large-aperture high-frequency radio telescopes. In this paper, we describe the implementation of an optical quadrant detector instrument that can detect and provide a correction signal for wind-induced pointing errors on the 100m diameter Green Bank Telescope (GBT). The instrument was calibrated using a combination of astronomical measurements and metrology. We find that the main wind-induced pointing errors on time scales of minutes are caused by the feedarm being blown along the direction of the wind vector. We also find that wind-induced structural excitation is virtually non-existent. We have implemented offline software to apply pointing corrections to the data from imaging instruments such as the MUSTANG 3.3 mm bolometer array, which can recover ~70% of sensitivity lost due to wind-induced pointing errors. We have also performed preliminary tests that show great promise for correcting these pointing errors in real-time using the telescope's subreflector servo system in combination with the quadrant detector signal.Comment: 17 pages, 11 figures; accepted for publication in PAS
    • …
    corecore