61 research outputs found

    A 32x32 50ps Resolution 10 bit Time to Digital Converter Array in 130nm CMOS for Time Correlated Imaging

    Get PDF
    We report the design and characterisation of a 32x32 time to digital (TDC) converter plus single photon avalanche diode (SPAD) pixel array implemented in a 130nm imaging process. Based on a gated ring oscillator approach, the 10 bit, 50mm pitch TDC array exhibits a minimum time resolution of 50ps, with accuracy of ±0.5 LSB DNL and 4 LSB INL. Process, voltage and temperature compensation (PVT) is achieved by locking the array to a stable external clock. The resulting time correlated pixel array is a viable candidate for single photon counting (TCSPC) applications such as fluorescent lifetime imaging microscopy (FLIM), nuclear or 3D imaging and permits scaling to larger array formats

    Design of a compact and low-power TDC for an array of SiPM's in 110nm CIS technology

    Get PDF
    Silicon photomultipliers (SiPMs) are meant to substitute photomultiplier tubes in high-energy physics detectors and nuclear medicine. This is because of their -to name a few interesting properties- compactness, lower bias voltage, tolerance to magnetic fields and finer spatial resolution. SiPMs can also be built in CMOS technology. This allows the incorporation of active quenching and recharge schemes at cell level and processing circuitry at pixel level. One of the elements that can lead to finer temporal resolutions is the time-to-digital converter (TDC). In this paper we describe the architecture of a compact TDC to be included at each pixel of an array of SiPMs. It is compact and consumes low power. It is based on a voltage controlled oscillator that generates multiple internal phases that are interpolated to provide time resolution below the time delay of a single gate. Simulation results of a 11b TDC based on a 4-stage VCRO in 110nm CIS technology yield a time resolution of 80.0ps, a DNL of ±0.28 LSB, a INL ±0.52 LSB, and a power consumption of 850μW.Ministerio de Economía y Competitividad TEC2015-66878-C3-1-RJunta de Andalucía TIC 2012-2338Office of Naval Research (USA) N00014141035

    A time-resolved multifocal multiphoton microscope for high speed FRET imaging in vivo

    Get PDF
    Imaging the spatio-temporal interaction of proteins in vivo is essential to understanding the complexities of biological systems. The highest accuracy monitoring of protein-protein interactions is achieved using FRET measured by fluorescence lifetime imaging with measurements taking minutes to acquire a single frame, limiting their use in dynamic live cell systems. We present a diffraction limited, massively parallel, time-resolved multifocal multiphoton microscope capable of producing fluorescence lifetime images with 55 ps time-resolution giving improvements in acquisition speed of a factor of 64. We present demonstrations with FRET imaging in a model cell system and demonstrate in vivo FLIM using a GTPase biosensor in the zebrafish embryo

    Ultra Compact and Low-power TDC and TAC Architectures for Highly-Parallel Implementation in Time-Resolved Image Sensors

    Get PDF
    We report on the design and characterization of three different architectures, namely two Time-to- Digital Converters (TDCs) and a Time-to-Amplitude Converter (TAC) with embedded analog-to-digital conversion, implemented in a 130-nm CMOS imaging technology. The proposed circuit solutions are conceived for implementation at pixel-level, in image sensors exploiting Single-Photon Avalanche Diodes as photodetectors. The fabricated 32x32 TDCs/TACs arrays have a pitch of 50μm in both directions while the average power consumption is between 28mW and 300mW depending on the architectural choice. The TAC achieves a time resolution of 160ps on a 20-ns time range with a differential and integral non-linearity (DNL, INL) of 0.7LSB and 1.9LSB, respectively. The two TDCs have a 10-bit resolution with a minimum time resolution between 50ps and 119ps and a worst-case accuracy of ±0.5 LSB DNL and 2.4 LSB INL. An overview of the performance is given together with the analysis of the pros and cons for each architecture

    High linearity SPAD and TDC array for TCSPC and 3D ranging applications

    Get PDF
    An array of 32x32 Single-Photon Avalanche-Diodes (SPADs) and Time-to-Digital Converters (TDCs) has been fabricated in a 0.35 mu m automotive-certified CMOS technology. The overall dimension of the chip is 9x9 mm(2). Each pixel is able to detect photons in the 300 nm - 900 nm wavelength range with a fill-factor of 3.14% and either to count them or to time stamp their arrival time. In photon-counting mode an in-pixel 6-bit counter provides photon-number-resolved intensity movies at 100 kfps, whereas in photon-timing mode the 10-bit in-pixel TDC provides time-resolved maps (Time-Correlated Single-Photon Counting measurements) or 3D depth-resolved (through direct time-of-flight technique) images and movies, with 312 ps resolution. The photodetector is a 30 mu m diameter SPAD with low Dark Count Rate (120 cps at room temperature, 3% hot-pixels) and 55% peak Photon Detection Efficiency (PDE) at 450 nm. The TDC has a 6-bit counter and a 4-bit fine interpolator, based on a Delay Locked Loop (DLL) line, which makes the TDC insensitive to process, voltage, and temperature drifts. The implemented sliding-scale technique improves linearity, giving 2% LSB DNL and 10% LSB INL. The single-shot precision is 260 ps rms, comprising SPAD, TDC and driving board jitter. Both optical and electrical crosstalk among SPADs and TDCs are negligible. 2D fast movies and 3D reconstructions with centimeter resolution are reported

    Direct Time of Flight Single Photon Imaging

    Get PDF

    A SPAD-Based QVGA Image Sensor for Single-Photon Counting and Quanta Imaging

    Get PDF
    A CMOS single-photon avalanche diode (SPAD)-based quarter video graphics array image sensor with 8-μm pixel pitch and 26.8% fill factor (FF) is presented. The combination of analog pixel electronics and scalable shared-well SPAD devices facilitates high-resolution, high-FF SPAD imaging arrays exhibiting photon shot-noise-limited statistics. The SPAD has 47 counts/s dark count rate at 1.5 V excess bias (EB), 39.5% photon detection probability (PDP) at 480 nm, and a minimum of 1.1 ns dead time at 1 V EB. Analog single-photon counting imaging is demonstrated with maximum 14.2-mV/SPAD event sensitivity and 0.06e- minimum equivalent read noise. Binary quanta image sensor (QIS) 16-kframes/s real-time oversampling is shown, verifying single-photon QIS theory with 4.6× overexposure latitude and 0.168e- read noise
    corecore