5,827 research outputs found

    Approximability of Connected Factors

    Get PDF
    Finding a d-regular spanning subgraph (or d-factor) of a graph is easy by Tutte's reduction to the matching problem. By the same reduction, it is easy to find a minimal or maximal d-factor of a graph. However, if we require that the d-factor is connected, these problems become NP-hard - finding a minimal connected 2-factor is just the traveling salesman problem (TSP). Given a complete graph with edge weights that satisfy the triangle inequality, we consider the problem of finding a minimal connected dd-factor. We give a 3-approximation for all dd and improve this to an (r+1)-approximation for even d, where r is the approximation ratio of the TSP. This yields a 2.5-approximation for even d. The same algorithm yields an (r+1)-approximation for the directed version of the problem, where r is the approximation ratio of the asymmetric TSP. We also show that none of these minimization problems can be approximated better than the corresponding TSP. Finally, for the decision problem of deciding whether a given graph contains a connected d-factor, we extend known hardness results.Comment: To appear in the proceedings of WAOA 201

    Approximation Algorithms for Union and Intersection Covering Problems

    Get PDF
    In a classical covering problem, we are given a set of requests that we need to satisfy (fully or partially), by buying a subset of items at minimum cost. For example, in the k-MST problem we want to find the cheapest tree spanning at least k nodes of an edge-weighted graph. Here nodes and edges represent requests and items, respectively. In this paper, we initiate the study of a new family of multi-layer covering problems. Each such problem consists of a collection of h distinct instances of a standard covering problem (layers), with the constraint that all layers share the same set of requests. We identify two main subfamilies of these problems: - in a union multi-layer problem, a request is satisfied if it is satisfied in at least one layer; - in an intersection multi-layer problem, a request is satisfied if it is satisfied in all layers. To see some natural applications, consider both generalizations of k-MST. Union k-MST can model a problem where we are asked to connect a set of users to at least one of two communication networks, e.g., a wireless and a wired network. On the other hand, intersection k-MST can formalize the problem of connecting a subset of users to both electricity and water. We present a number of hardness and approximation results for union and intersection versions of several standard optimization problems: MST, Steiner tree, set cover, facility location, TSP, and their partial covering variants

    Dial a Ride from k-forest

    Full text link
    The k-forest problem is a common generalization of both the k-MST and the dense-kk-subgraph problems. Formally, given a metric space on nn vertices VV, with mm demand pairs V×V\subseteq V \times V and a ``target'' kmk\le m, the goal is to find a minimum cost subgraph that connects at least kk demand pairs. In this paper, we give an O(min{n,k})O(\min\{\sqrt{n},\sqrt{k}\})-approximation algorithm for kk-forest, improving on the previous best ratio of O(n2/3logn)O(n^{2/3}\log n) by Segev & Segev. We then apply our algorithm for k-forest to obtain approximation algorithms for several Dial-a-Ride problems. The basic Dial-a-Ride problem is the following: given an nn point metric space with mm objects each with its own source and destination, and a vehicle capable of carrying at most kk objects at any time, find the minimum length tour that uses this vehicle to move each object from its source to destination. We prove that an α\alpha-approximation algorithm for the kk-forest problem implies an O(αlog2n)O(\alpha\cdot\log^2n)-approximation algorithm for Dial-a-Ride. Using our results for kk-forest, we get an O(min{n,k}log2n)O(\min\{\sqrt{n},\sqrt{k}\}\cdot\log^2 n)- approximation algorithm for Dial-a-Ride. The only previous result known for Dial-a-Ride was an O(klogn)O(\sqrt{k}\log n)-approximation by Charikar & Raghavachari; our results give a different proof of a similar approximation guarantee--in fact, when the vehicle capacity kk is large, we give a slight improvement on their results.Comment: Preliminary version in Proc. European Symposium on Algorithms, 200
    corecore