3 research outputs found

    Energy-Efficient Digital Signal Processing Hardware Design.

    Full text link
    As CMOS technology has developed considerably in the last few decades, many SoCs have been implemented across different application areas due to reduced area and power consumption. Digital signal processing (DSP) algorithms are frequently employed in these systems to achieve more accurate operation or faster computation. However, CMOS technology scaling started to slow down recently and relatively large systems consume too much power to rely only on the scaling effect while system power budget such as battery capacity improves slowly. In addition, there exist increasing needs for miniaturized computing systems including sensor nodes that can accomplish similar operations with significantly smaller power budget. Voltage scaling is one of the most promising power saving techniques due to quadratic switching power reduction effect, making it necessary feature for even high-end processors. However, in order to achieve maximum possible energy efficiency, systems should operate in near or sub-threshold regimes where leakage takes significant portion of power. In this dissertation, a few key energy-aware design approaches are described. Considering prominent leakage and larger PVT variability in low operating voltages, multi-level energy saving techniques to be described are applied to key building blocks in DSP applications: architecture study, algorithm-architecture co-optimization, and robust yet low-power memory design. Finally, described approaches are applied to design examples including a visual navigation accelerator, ultra-low power biomedical SoC and face detection/recognition processor, resulting in 2~100 times power savings than state-of-the-art.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/110496/1/djeon_1.pd

    Selected Papers from IEEE ICASI 2019

    Get PDF
    The 5th IEEE International Conference on Applied System Innovation 2019 (IEEE ICASI 2019, https://2019.icasi-conf.net/), which was held in Fukuoka, Japan, on 11–15 April, 2019, provided a unified communication platform for a wide range of topics. This Special Issue entitled “Selected Papers from IEEE ICASI 2019” collected nine excellent papers presented on the applied sciences topic during the conference. Mechanical engineering and design innovations are academic and practical engineering fields that involve systematic technological materialization through scientific principles and engineering designs. Technological innovation by mechanical engineering includes information technology (IT)-based intelligent mechanical systems, mechanics and design innovations, and applied materials in nanoscience and nanotechnology. These new technologies that implant intelligence in machine systems represent an interdisciplinary area that combines conventional mechanical technology and new IT. The main goal of this Special Issue is to provide new scientific knowledge relevant to IT-based intelligent mechanical systems, mechanics and design innovations, and applied materials in nanoscience and nanotechnology

    Software-hardware systems for the Internet-of-Things

    Get PDF
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.Cataloged from PDF version of thesis.Includes bibliographical references (pages [187]-201).Although interest in connected devices has surged in recent years, barriers still remain in realizing the dream of the Internet of Things (IoT). The main challenge in delivering IoT systems stems from a huge diversity in their demands and constraints. Some applications work with small sensors and operate using minimal energy and bandwidth. Others use high-data-rate multimedia and virtual reality systems, which require multiple-gigabits-per-second throughput and substantial computing power. While both extremes stress the computation, communications, and energy resources available to the underlying devices, each intrinsically requires different solutions to satisfy its needs. This thesis addresses both bandwidth and energy constraints by developing custom software-hardware systems. To tackle the bandwidth constraint, this thesis introduces three systems. First, it presents AirShare, a synchronized abstraction to the physical layer, which enables the direct implementation of diverse kinds of distributed protocols for loT sensors. This capability results in a much higher throughput in today's IoT networks. Then, it presents Agile-Link and MoVR, new millimeter wave devices and protocols which address two main problems that prevent the adoption of millimeter wave frequencies in today's networks: signal blockage and beam alignment. Lastly, this thesis shows how these systems enable new IoT applications, such as untethered high-quality virtual reality. To tackle the energy constraint, this thesis introduces a VLSI chip, which is capable of performing a million-point Fourier transform in real-time, while consuming 40 times less power than prior fast Fourier transforms. Then, it presents Caraoke, a small, low-cost and low-power sensor, which harvests its energy from solar and enables new smart city applications, such as traffic management and smart parking.by Omid Salehi-Abari.Ph. D
    corecore