4 research outputs found

    CMOS Ising Machines with Coupled Bistable Nodes

    Full text link
    Ising machines use physics to naturally guide a dynamical system towards an optimal state which can be read out as a heuristical solution to a combinatorial optimization problem. Such designs that use nature as a computing mechanism can lead to higher performance and/or lower operation costs. Quantum annealers are a prominent example of such efforts. However, existing Ising machines are generally bulky and energy intensive. Such disadvantages might lead to intrinsic advantages at some larger scale in the future. But for now, integrated electronic designs allow more immediate applications. We propose one such design that uses bistable nodes, coupled with programmable and variable strengths. The design is fully CMOS compatible for on-chip applications and demonstrates competitive solution quality and significantly superior execution time and energy.Comment: 11 pages, 12 figures, 2 tables, 5 sections

    Non-convex Quadratic Programming Using Coherent Optical Networks

    Full text link
    We investigate the possibility of solving continuous non-convex optimization problems using a network of interacting quantum optical oscillators. We propose a native encoding of continuous variables in analog signals associated with the quadrature operators of a set of quantum optical modes. Optical coupling of the modes and noise introduced by vacuum fluctuations from external reservoirs or by weak measurements of the modes are used to optically simulate a diffusion process on a set of continuous random variables. The process is run sufficiently long for it to relax into the steady state of an energy potential defined on a continuous domain. As a first demonstration, we numerically benchmark solving box-constrained quadratic programming (BoxQP) problems using these settings. We consider delay-line and measurement-feedback variants of the experiment. Our benchmarking results demonstrate that in both cases the optical network is capable of solving BoxQP problems over three orders of magnitude faster than a state-of-the-art classical heuristic.Comment: 10 pages, 5 figure

    GSI Scientific Report 2009 [GSI Report 2010-1]

    Get PDF
    Displacement design response spectrum is an essential component for the currently-developing displacement-based seismic design and assessment procedures. This paper proposes a new and simple method for constructing displacement design response spectra on soft soil sites. The method takes into account modifications of the seismic waves by the soil layers, giving due considerations to factors such as the level of bedrock shaking, material non-linearity, seismic impedance contrast at the interface between soil and bedrock, and plasticity of the soil layers. The model is particularly suited to applications in regions with a paucity of recorded strong ground motion data, from which empirical models cannot be reliably developed
    corecore