3 research outputs found

    An Energy-Efficient Reconfigurable Mobile Memory Interface for Computing Systems

    Get PDF
    The critical need for higher power efficiency and bandwidth transceiver design has significantly increased as mobile devices, such as smart phones, laptops, tablets, and ultra-portable personal digital assistants continue to be constructed using heterogeneous intellectual properties such as central processing units (CPUs), graphics processing units (GPUs), digital signal processors, dynamic random-access memories (DRAMs), sensors, and graphics/image processing units and to have enhanced graphic computing and video processing capabilities. However, the current mobile interface technologies which support CPU to memory communication (e.g. baseband-only signaling) have critical limitations, particularly super-linear energy consumption, limited bandwidth, and non-reconfigurable data access. As a consequence, there is a critical need to improve both energy efficiency and bandwidth for future mobile devices.;The primary goal of this study is to design an energy-efficient reconfigurable mobile memory interface for mobile computing systems in order to dramatically enhance the circuit and system bandwidth and power efficiency. The proposed energy efficient mobile memory interface which utilizes an advanced base-band (BB) signaling and a RF-band signaling is capable of simultaneous bi-directional communication and reconfigurable data access. It also increases power efficiency and bandwidth between mobile CPUs and memory subsystems on a single-ended shared transmission line. Moreover, due to multiple data communication on a single-ended shared transmission line, the number of transmission lines between mobile CPU and memories is considerably reduced, resulting in significant technological innovations, (e.g. more compact devices and low cost packaging to mobile communication interface) and establishing the principles and feasibility of technologies for future mobile system applications. The operation and performance of the proposed transceiver are analyzed and its circuit implementation is discussed in details. A chip prototype of the transceiver was implemented in a 65nm CMOS process technology. In the measurement, the transceiver exhibits higher aggregate data throughput and better energy efficiency compared to prior works

    Ultra Low-Power Frequency Synthesizers for Duty Cycled IoT radios

    Get PDF
    Internet of Things (IoT), which is one of the main talking points in the electronics industry today, consists of a number of highly miniaturized sensors and actuators which sense the physical environment around us and communicate that information to a central information hub for further processing. This agglomeration of miniaturized sensors helps the system to be deployed in previously impossible arenas such as healthcare (Body Area Networks - BAN), industrial automation, real-time monitoring environmental parameters and so on; thereby greatly improving the quality of life. Since the IoT devices are usually untethered, their energy sources are limited (typically battery powered or energy scavenging) and hence have to consume very low power. Today's IoT systems employ radios that use communication protocols like Bluetooth Smart; which means that they communicate at data rates of a few hundred kb/s to a few Mb/s while consuming around a few mW of power. Even though the power dissipation of these radios have been decreasing steadily over the years, they seem to have reached a lower limit in the recent times. Hence, there is a need to explore other avenues to further reduce this dissipation so as to further improve the energy autonomy of the IoT node. Duty cycling has emerged as a promising alternative in this sense since it involves radios transmitting very short bursts of data at high rates and being asleep the rest of the time. In addition, high data rates proffer the added advantage of reducing network congestion which has become a major problem in IoT owing to the increase in the number of sensor nodes as well as the volume of data they send. But, as the average power (energy) dissipated decreases due to duty cycling, the energy overhead associated with the start-up phase of the radio becomes comparable with the former. Therefore, in order to take full advantage of duty cycling, the radio should be capable of being turned ON/OFF almost instantaneously. Furthermore, the radio of the future should also be able to support easy frequency hopping to improve the system efficiency from an interference point of view. In other words, in addition to high data rate capability, the next generation radios must also be highly agile and have a low energy overhead. All these factors viz. data rate, agility and overhead are mainly dependent on the radio's frequency synthesizer and therefore emphasis needs to be laid on developing new synthesizer architectures which are also amenable to technology scaling. This thesis deals with the evolution of one such all-digital frequency synthesizer; with each step dealing with one of the aforementioned issues. In order to reduce the energy overhead of the synthesizer, FBAR resonators (which are a class of MEMS resonators) are used as the frequency reference instead of a traditional quartz crystal. The FBAR resonators aid the design of fast-startup oscillators as opposed to the long latency associated with the start-up of the crystal oscillator. In addition, the frequency stability of the FBAR lends itself to open-loop architecture which can support very high data rates. Another advantage of the open-loop architecture is the frequency agility which aids easy channel switching for multi-hop architectures, as demonstrated in this thesis
    corecore