3 research outputs found

    Design and implementation of a multi-modal sensor with on-chip security

    Get PDF
    With the advancement of technology, wearable devices for fitness tracking, patient monitoring, diagnosis, and disease prevention are finding ways to be woven into modern world reality. CMOS sensors are known to be compact, with low power consumption, making them an inseparable part of wireless medical applications and Internet of Things (IoT). Digital/semi-digital output, by the translation of transmitting data into the frequency domain, takes advantages of both the analog and digital world. However, one of the most critical measures of communication, security, is ignored and not considered for fabrication of an integrated chip. With the advancement of Moore\u27s law and the possibility of having a higher number of transistors and more complex circuits, the feasibility of having on-chip security measures is drawing more attention. One of the fundamental means of secure communication is real-time encryption. Encryption/ciphering occurs when we encode a signal or data, and prevents unauthorized parties from reading or understanding this information. Encryption is the process of transmitting sensitive data securely and with privacy. This measure of security is essential since in biomedical devices, the attacker/hacker can endanger users of IoT or wearable sensors (e.g. attacks at implanted biosensors can cause fatal harm to the user). This work develops 1) A low power and compact multi-modal sensor that can measure temperature and impedance with a quasi-digital output and 2) a low power on-chip signal cipher for real-time data transfer

    CMOS MULTI-MODAL INTEGRATED SYSTEMS FOR FUTURE BIOELECTRONICS AND BIOSENSORS

    Get PDF
    Cells are the basic structural biological units of all known living organisms. They are highly sophisticated system with thousands of molecules operating in hundreds of pathways to maintain their proper functions, phenotypes, and physiological behaviors. With this scale of complexity, cells often exhibit multi-physiological properties as their cellular fingerprints from external stimulations. In order to further advance the frontiers in bioscience and biotechnologies such as stem cell manufacturing, synthetic biology, and regenerative medicine, it is required to comprehend complex cell physiology of living cells. Therefore, a comprehensive set of technologies is needed to harvest quantitative biological data from given cell samples. Such demands have stimulated extensive research on new bioelectronics and biosensors to characterize their functional information by converting their biological activities to electrical signals. As a result, various bioelectronics and biosensors are reported and employed in many in vivo and in vitro applications. Since sensing electrodes of the devices are physically in touch with biological/chemical samples and record their signals, long-term biocompatibility and chemical/mechanical stability is of paramount importance in numerous biological applications. Furthermore, the devices should achieve high sensitivity/resolution/linearity, large field-of-view (FoV), multi-modal sensing, and real-time monitoring, while maintaining small feature size of devices to use small volume of biological/chemical samples and reduce cost. As a result, My Ph.D research aims to study interfacial electrochemical impedance spectroscopy (EIS) of electrodes with different combination of materials/sizes and to design novel multi-modal sensing/actuation array architectures with CMOS compatible in-house post-processing to address the design challenges of the bioelectronics and biosensors.Ph.D

    COVID-9 Detection Strategies: Recent Advances and Future Prospects

    Get PDF
    COVID-19 pandemic has created a global medical and economic crisis. Having many unsuspecting asymptotically carriers interacting with others increases the risk of infecting healthy people which leads to problems such as overloaded clinics and hospitals. These conditions make tracing the asymptotic carriers of COVID-19 and detecting all infected individuals rapidly and accurately critical for the control and further prevention of this disease. Considering the long duration of vaccine development, their low efficiency for protection against some of the viral variants, and lack of any drugs for efficient COVID-19 treatment, diagnostic tests are essential for detecting the infection and limiting the viral spread. Therefore, how to efficiently screen for positive patients with coronavirus 2019 has become the primary task for epidemic prevention. Due to the critical roles of the diagnostic tools in fighting the coronavirus disease, a large number of techniques have rapidly. This work, as a comprehensive review, aims to cover not only the currently approved nucleic acid- and protein-based diagnostic technologies, but also the promising strategies for COVID-19 detection and also fighting future hazards. The goal is to bring together the most important advances from the broad discipline of biomedical engineering, enhancing their visibility through opinion and new articles, and providing overviews of the state-of-the-art in each field
    corecore