5 research outputs found

    15 Gb/s 50-cm wireless link using a high power compact III-V 84 GHz transmitter

    Get PDF
    This paper reports on a 15-Gb/s wireless link that employs a high-power resonant tunneling diode (RTD) oscillator as a transmitter (Tx). The fundamental carrier frequency is 84 GHz and the maximum output power is 2 mW without any power amplifier. The reported performance is over a 50-cm link, with simple amplitude shift keying modulation utilized. The 15-Gb/s data link shows correctable bit error rate (BER) of 4.1 x 10⁻³, while the lower data rates of 10 and 5 Gb/s show a BER of 3.6 x 10⁻⁴ and 1.0 x 10⁻⁶, respectively. These results demonstrate that the RTD Tx is a promising candidate for the next-generation low-cost, compact, ultrahigh data rates wireless communication systems

    A 15-Gb/s wireless on-off keying link

    No full text
    Bit-error rate measurements for ON-OFF keying modulation at multigigabit per second rates over a V-band wireless link are presented. Serial data-rates from 2.5 to 20 Gb/s were studied for a 231-1 bit random sequence. Error-free data transfer over a 0.3-m link was achieved at up to 10 Gb/s. Acceptable bit-error rates, <10-5 and 10-3, were measured at up to 1.5 m for 10- and 15-Gb/s data-rate, respectively. The performance was achieved using a transmitter that consists of an integrated wavelet generator, whereas the receiver was built from off-the-shelf waveguide components. The results demonstrate that very high data-rates may be achieved using binary modulation and short symbols generated in an efficient V-band transmitter. The system is benchmarked against state-of-the-art transceiver systems with multigigabit per second data-rates

    A 15-Gb/s Wireless ON-OFF Keying Link

    No full text

    Compact and Efficient Millimetre-Wave Circuits for Wideband Applications

    Get PDF
    Radio systems, along with the ever increasing processing power provided by computer technology, have altered many aspects of our society over the last century. Various gadgets and integrated electronics are found everywhere nowadays; many of these were science-fiction only a few decades ago. Most apparent is perhaps your ``smart phone'', possibly kept within arm's reach wherever you go, that provides various services, news updates, and social networking via wireless communications systems. The frameworks of the fifth generation wireless system is currently being developed worldwide. Inclusion of millimetre-wave technology promise high-speed piconets, wireless back-haul on pencil-beam links, and further functionality such as high-resolution radar imaging. This thesis addresses the challenge to provide signals at carrier frequencies in the millimetre-wave spectrum, and compact integrated transmitter front-ends of sub-wavelength dimensions. A radio frequency pulse generator, i.e. a ``wavelet genarator'', circuit is implemented using diodes and transistors in III--V compound semiconductor technology. This simple but energy-efficient front-end circuit can be controlled on the time-scale of picoseconds. Transmission of wireless data is thereby achieved at high symbol-rates and low power consumption per bit. A compact antenna is integrated with the transmitter circuit, without any intermediate transmission line. The result is a physically small, single-chip, transmitter front-end that can output high equivalent isotropically radiated power. This element radiation characteristic is wide-beam and suitable for array implementations

    Accurate quantum transport modelling and epitaxial structure design of high-speed and high-power In0.53Ga0.47As/AlAs double-barrier resonant tunnelling diodes for 300-GHz oscillator sources

    Get PDF
    Terahertz (THz) wave technology is envisioned as an appealing and conceivable solution in the context of several potential high-impact applications, including sixth generation (6G) and beyond consumer-oriented ultra-broadband multi-gigabit wireless data-links, as well as highresolution imaging, radar, and spectroscopy apparatuses employable in biomedicine, industrial processes, security/defence, and material science. Despite the technological challenges posed by the THz gap, recent scientific advancements suggest the practical viability of THz systems. However, the development of transmitters (Tx) and receivers (Rx) based on compact semiconductor devices operating at THz frequencies is urgently demanded to meet the performance requirements calling from emerging THz applications. Although several are the promising candidates, including high-speed III-V transistors and photo-diodes, resonant tunnelling diode (RTD) technology offers a compact and high performance option in many practical scenarios. However, the main weakness of the technology is currently represented by the low output power capability of RTD THz Tx, which is mainly caused by the underdeveloped and non-optimal device, as well as circuit, design implementation approaches. Indeed, indium phosphide (InP) RTD devices can nowadays deliver only up to around 1 mW of radio-frequency (RF) power at around 300 GHz. In the context of THz wireless data-links, this severely impacts the Tx performance, limiting communication distance and data transfer capabilities which, at the current time, are of the order of few tens of gigabit per second below around 1 m. However, recent research studies suggest that several milliwatt of output power are required to achieve bit-rate capabilities of several tens of gigabits per second and beyond, and to reach several metres of communication distance in common operating conditions. Currently, the shortterm target is set to 5−10 mW of output power at around 300 GHz carrier waves, which would allow bit-rates in excess of 100 Gb/s, as well as wireless communications well above 5 m distance, in first-stage short-range scenarios. In order to reach it, maximisation of the RTD highfrequency RF power capability is of utmost importance. Despite that, reliable epitaxial structure design approaches, as well as accurate physical-based numerical simulation tools, aimed at RF power maximisation in the 300 GHz-band are lacking at the current time. This work aims at proposing practical solutions to address the aforementioned issues. First, a physical-based simulation methodology was developed to accurately and reliably simulate the static current-voltage (IV ) characteristic of indium gallium arsenide/aluminium arsenide (In-GaAs/AlAs) double-barrier RTD devices. The approach relies on the non-equilibrium Green’s function (NEGF) formalism implemented in Silvaco Atlas technology computer-aided design (TCAD) simulation package, requires low computational budget, and allows to correctly model In0.53Ga0.47As/AlAs RTD devices, which are pseudomorphically-grown on lattice-matched to InP substrates, and are commonly employed in oscillators working at around 300 GHz. By selecting the appropriate physical models, and by retrieving the correct materials parameters, together with a suitable discretisation of the associated heterostructure spatial domain through finite-elements, it is shown, by comparing simulation data with experimental results, that the developed numerical approach can reliably compute several quantities of interest that characterise the DC IV curve negative differential resistance (NDR) region, including peak current, peak voltage, and voltage swing, all of which are key parameters in RTD oscillator design. The demonstrated simulation approach was then used to study the impact of epitaxial structure design parameters, including those characterising the double-barrier quantum well, as well as emitter and collector regions, on the electrical properties of the RTD device. In particular, a comprehensive simulation analysis was conducted, and the retrieved output trends discussed based on the heterostructure band diagram, transmission coefficient energy spectrum, charge distribution, and DC current-density voltage (JV) curve. General design guidelines aimed at enhancing the RTD device maximum RF power gain capability are then deduced and discussed. To validate the proposed epitaxial design approach, an In0.53Ga0.47As/AlAs double-barrier RTD epitaxial structure providing several milliwatt of RF power was designed by employing the developed simulation methodology, and experimentally-investigated through the microfabrication of RTD devices and subsequent high-frequency characterisation up to 110 GHz. The analysis, which included fabrication optimisation, reveals an expected RF power performance of up to around 5 mW and 10 mW at 300 GHz for 25 μm2 and 49 μm2-large RTD devices, respectively, which is up to five times higher compared to the current state-of-the-art. Finally, in order to prove the practical employability of the proposed RTDs in oscillator circuits realised employing low-cost photo-lithography, both coplanar waveguide and microstrip inductive stubs are designed through a full three-dimensional electromagnetic simulation analysis. In summary, this work makes and important contribution to the rapidly evolving field of THz RTD technology, and demonstrates the practical feasibility of 300-GHz high-power RTD devices realisation, which will underpin the future development of Tx systems capable of the power levels required in the forthcoming THz applications
    corecore