21,725 research outputs found

    Small-signal amplifier based on single-layer MoS2

    Get PDF
    In this Letter we demonstrate the operation of an analog small-signal amplifier based on single-layer MoS2, a semiconducting analogue of graphene. Our device consists of two transistors integrated on the same piece of single-layer MoS2. The high intrinsic band gap of 1.8 eV allows MoS2-based amplifiers to operate with a room temperature gain of 4. The amplifier operation is demonstrated for the frequencies of input signal up to 2 kHz preserving the gain higher than 1. Our work shows that MoS2 can effectively amplify signals and that it could be used for advanced analog circuits based on two-dimensional materials.Comment: Submitted version of the manuscrip

    Electric vehicle power train instrumentation: Some constraints and considerations

    Get PDF
    The application of pulse modulation control (choppers) to dc motors creates unique instrumentation problems. In particular, the high harmonic components contained in the current waveforms require frequency response accommodations not normally considered in dc instrumentation. In addition to current sensing, accurate power measurement requires not only adequate frequency response but must also address phase errors caused by the finite bandwidths and component characteristics involved. The implications of these problems are assessed

    High-power converters for space applications

    Get PDF
    Phase 1 was a concept definition effort to extend space-type dc/dc converter technology to the megawatt level with a weight of less than 0.1 kg/kW (220 lb./MW). Two system designs were evaluated in Phase 1. Each design operates from a 5 kV stacked fuel cell source and provides a voltage step-up to 100 kV at 10 A for charging capacitors (100 pps at a duty cycle of 17 min on, 17 min off). Both designs use an MCT-based, full-bridge inverter, gaseous hydrogen cooling, and crowbar fault protection. The GE-CRD system uses an advanced high-voltage transformer/rectifier filter is series with a resonant tank circuit, driven by an inverter operating at 20 to 50 kHz. Output voltage is controlled through frequency and phase shift control. Fast transient response and stability is ensured via optimal control. Super-resonant operation employing MCTs provides the advantages of lossless snubbing, no turn-on switching loss, use of medium-speed diodes, and intrinsic current limiting under load-fault conditions. Estimated weight of the GE-CRD system is 88 kg (1.5 cu ft.). Efficiency of 94.4 percent and total system loss is 55.711 kW operating at 1 MW load power. The Maxwell system is based on a resonance transformer approach using a cascade of five LC resonant sections at 100 kHz. The 5 kV bus is converted to a square wave, stepped-up to a 100 kV sine wave by the LC sections, rectified, and filtered. Output voltage is controlled with a special series regulator circuit. Estimated weight of the Maxwell system is 83.8 kg (4.0 cu ft.). Efficiency is 87.2 percent and total system loss is 146.411 kW operating at 1 MW load power

    Photo sensor array technology development

    Get PDF
    The development of an improved capability photo sensor array imager for use in a Viking '75 type facsimile camera is presented. This imager consists of silicon photodiodes and lead sulfide detectors to cover a spectral range from 0.4 to 2.7 microns. An optical design specifying filter configurations and convergence angles is described. Three electronics design approaches: AC-chopped light, DC-dual detector, and DC-single detector, are investigated. Experimental and calculated results are compared whenever possible using breadboard testing and tolerance analysis techniques. Results show that any design used must be forgiving of the relative instability of lead sulfide detectors. A final design using lead sulfide detectors and associated electronics is implemented by fabrication of a hybrid prototype device. Test results of this device show a good agreement with calculated values

    Towards the observation of phase locked Bloch oscillations in arrays of small Josephson junctions

    Full text link
    We have designed an experiment and performed extensive simulations and preliminary measurements to identify a set of realistic circuit parameters that should allow the observation of constant-current steps at I=2ef in short arrays of small Josephson junctions under external AC drive of frequency f. Observation of these steps demonstrating phase lock of the Bloch oscillations with the external drive requires a high-impedance environment for the array, which is provided by on-chip resistors close to the junctions. We show that the width and shape of the steps crucially depend on the shape of the drive and the electron temperature in the resistors

    A supercapacitor based enhancement technique for stand-alone surge protection circuits

    Get PDF
    With the International Technology Roadmap for Semiconductors predicting below-25nm feature-size VLSIs, powered by DC power supplies of less than 1V, protection against transients has become mandatory for modern electronic systems. Surge protection circuits are usually designed using non-linear devices such as metal oxide varistors and semiconductor devices and these devices are rated for short-term energy absorption, based on transient waveforms defined by standards such as IEEE C62.41. Despite their very low voltage DC ratings, supercapacitors are characterized by large time constants and significant continuous energy absorption ratings. This paper presents details of a patent-pending technique where multi-winding magnetic core with a supercapacitor based energy absorber stage can be combined with the commonly used non-linear devices, for enhanced protection. Comparison of the supercapacitor-enhanced circuit together with a commercial surge protection circuit is provided
    • 

    corecore