63 research outputs found

    A Research on High-Performance Analog-to-Digital Converters in Wireless Communication Systems

    Get PDF
    博士(工学)法政大学 (Hosei University

    Design and debugging of multi-step analog to digital converters

    Get PDF
    With the fast advancement of CMOS fabrication technology, more and more signal-processing functions are implemented in the digital domain for a lower cost, lower power consumption, higher yield, and higher re-configurability. The trend of increasing integration level for integrated circuits has forced the A/D converter interface to reside on the same silicon in complex mixed-signal ICs containing mostly digital blocks for DSP and control. However, specifications of the converters in various applications emphasize high dynamic range and low spurious spectral performance. It is nontrivial to achieve this level of linearity in a monolithic environment where post-fabrication component trimming or calibration is cumbersome to implement for certain applications or/and for cost and manufacturability reasons. Additionally, as CMOS integrated circuits are accomplishing unprecedented integration levels, potential problems associated with device scaling – the short-channel effects – are also looming large as technology strides into the deep-submicron regime. The A/D conversion process involves sampling the applied analog input signal and quantizing it to its digital representation by comparing it to reference voltages before further signal processing in subsequent digital systems. Depending on how these functions are combined, different A/D converter architectures can be implemented with different requirements on each function. Practical realizations show the trend that to a first order, converter power is directly proportional to sampling rate. However, power dissipation required becomes nonlinear as the speed capabilities of a process technology are pushed to the limit. Pipeline and two-step/multi-step converters tend to be the most efficient at achieving a given resolution and sampling rate specification. This thesis is in a sense unique work as it covers the whole spectrum of design, test, debugging and calibration of multi-step A/D converters; it incorporates development of circuit techniques and algorithms to enhance the resolution and attainable sample rate of an A/D converter and to enhance testing and debugging potential to detect errors dynamically, to isolate and confine faults, and to recover and compensate for the errors continuously. The power proficiency for high resolution of multi-step converter by combining parallelism and calibration and exploiting low-voltage circuit techniques is demonstrated with a 1.8 V, 12-bit, 80 MS/s, 100 mW analog to-digital converter fabricated in five-metal layers 0.18-µm CMOS process. Lower power supply voltages significantly reduce noise margins and increase variations in process, device and design parameters. Consequently, it is steadily more difficult to control the fabrication process precisely enough to maintain uniformity. Microscopic particles present in the manufacturing environment and slight variations in the parameters of manufacturing steps can all lead to the geometrical and electrical properties of an IC to deviate from those generated at the end of the design process. Those defects can cause various types of malfunctioning, depending on the IC topology and the nature of the defect. To relive the burden placed on IC design and manufacturing originated with ever-increasing costs associated with testing and debugging of complex mixed-signal electronic systems, several circuit techniques and algorithms are developed and incorporated in proposed ATPG, DfT and BIST methodologies. Process variation cannot be solved by improving manufacturing tolerances; variability must be reduced by new device technology or managed by design in order for scaling to continue. Similarly, within-die performance variation also imposes new challenges for test methods. With the use of dedicated sensors, which exploit knowledge of the circuit structure and the specific defect mechanisms, the method described in this thesis facilitates early and fast identification of excessive process parameter variation effects. The expectation-maximization algorithm makes the estimation problem more tractable and also yields good estimates of the parameters for small sample sizes. To allow the test guidance with the information obtained through monitoring process variations implemented adjusted support vector machine classifier simultaneously minimize the empirical classification error and maximize the geometric margin. On a positive note, the use of digital enhancing calibration techniques reduces the need for expensive technologies with special fabrication steps. Indeed, the extra cost of digital processing is normally affordable as the use of submicron mixed signal technologies allows for efficient usage of silicon area even for relatively complex algorithms. Employed adaptive filtering algorithm for error estimation offers the small number of operations per iteration and does not require correlation function calculation nor matrix inversions. The presented foreground calibration algorithm does not need any dedicated test signal and does not require a part of the conversion time. It works continuously and with every signal applied to the A/D converter. The feasibility of the method for on-line and off-line debugging and calibration has been verified by experimental measurements from the silicon prototype fabricated in standard single poly, six metal 0.09-µm CMOS process

    Методи та засоби підвищення точності циклічних АЦП на основі вагової надлишковості

    Get PDF
    У монографії розглянуто питання підвищення точності циклічних АЦП із ваговою надлишковістю. Проведено аналіз статичних похибок і визначено зв'язок між похибками окремих елементів перетворювача та характеристикою перетворення АЦП. Запропоновано оригінальні алгоритми самокалібрування та структурні схеми АЦП, що підвищують точність цього класу пристроїв, які базуються на введенні інформаційної та структурної надлишковості. Книга розрахована на науковців, аспірантів та інженерів, які займаються розробкою високоточних аналого-цифрових перетворювачів

    Analysis and Design of High-Speed A/D Converters in SiGe Technology

    Get PDF
    Mixed-signal systems play a key role in modern communications and electronics. The quality of A/D and D/A conversions deeply affects what we see and what we hear in the real world video and radio. This dissertation deals with high-speed ADCs: a 5-bit 500-MSPS ADC and an 8-bit 2-GSPS ADC. These units can be applied in flat panel display, image enhancement and in high-speed data link. To achieve the state-of-the-art performance, we employed a 0.13-μm/2.5-V 210-GHz (unity-gain frequency) BiCMOS SiGe process for all the implementations. The circuit building blocks, such as the Track-and-Hold circuit (T/H) and the comparator, required by an ADC not only benefit from SiGe's superior ultra-high frequency properties but also by its power drive capability. The T/H described here achieved a dynamic performance of 8-bit accuracy at 2-GHz Nyquist rate with an input full scale range of 1 Vp-p. The T/H consumed 13 mW of power. The unique 4-in/2-out comparator was made of fully differential emitter couple pairs in order to operate at such a high frequency. Cascaded cross-coupled amplifier core was employed to reduce Miller effect and to avoid collector-emitter breakdown of the HBTs. We utilized the comparator interpolation technique between the preamplifer stages and the latches to reduce the total power dissipated by the comparator array. In addition, we developed an innovative D/A conversion and analog subtraction approach necessary for two-step conversion by using a bipolar pre-distortion technique. This innovation enabled us to decrease the design complexity in the subranging process of a two-step ADC. The 5-bit interpolating ADC operated at 2-GSPS achieved a differential nonlinearity (DNL) of 0.114 LSB and an integral nonlinearity (INL) of 0.076 LSB. The effective number of bits (ENOBs) are 4.3 bits at low frequency and 4.1 bits near Nyquist rate. The power dissipation was reduced more than half to 66.14 mW, with comparator interpolation. The 8-bit two-step interpolating ADC operated at 500-MSPS. It achieved a DNL of 0.33 LSB and an INL of 0.40 LSB with a power consumption of 172 mW. The ENOBs are 7.5 bits at low frequency and 6.9 bits near Nyquist rate

    High-Speed Low-Power Analog to Digital Converter for Digital Beam Forming Systems

    Get PDF
    abstract: Time-interleaved analog to digital converters (ADCs) have become critical components in high-speed communication systems. Consumers demands for smaller size, more bandwidth and more features from their communication systems have driven the market to use modern complementary metal-oxide-semiconductor (CMOS) technologies with shorter channel-length transistors and hence a more compact design. Downscaling the supply voltage which is required in submicron technologies benefits digital circuits in terms of power and area. Designing accurate analog circuits, however becomes more challenging due to the less headroom. One way to overcome this problem is to use calibration to compensate for the loss of accuracy in analog circuits. Time-interleaving increases the effective data conversion rate in ADCs while keeping the circuit requirements the same. However, this technique needs special considerations as other design issues associated with using parallel identical channels emerge. The first and the most important is the practical issue of timing mismatch between channels, also called sample-time error, which can directly affect the performance of the ADC. Many techniques have been developed to tackle this issue both in analog and digital domains. Most of these techniques have high complexities especially when the number of channels exceeds 2 and some of them are only valid when input signal is a single tone sinusoidal which limits the application. This dissertation proposes a sample-time error calibration technique which bests the previous techniques in terms of simplicity, and also could be used with arbitrary input signals. A 12-bit 650 MSPS pipeline ADC with 1.5 GHz analog bandwidth for digital beam forming systems is designed in IBM 8HP BiCMOS 130 nm technology. A front-end sample-and-hold amplifier (SHA) was also designed to compare with an SHA-less design in terms of performance, power and area. Simulation results show that the proposed technique is able to improve the SNDR by 20 dB for a mismatch of 50% of the sampling period and up to 29 dB at 37% of the Nyquist frequency. The designed ADC consumes 122 mW in each channel and the clock generation circuit consumes 142 mW. The ADC achieves 68.4 dB SNDR for an input of 61 MHz.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Energy Efficient Techniques For Algorithmic Analog-To-Digital Converters

    Get PDF
    Analog-to-digital converters (ADCs) are key design blocks in state-of-art image, capacitive, and biomedical sensing applications. In these sensing applications, algorithmic ADCs are the preferred choice due to their high resolution and low area advantages. Algorithmic ADCs are based on the same operating principle as that of pipelined ADCs. Unlike pipelined ADCs where the residue is transferred to the next stage, an N-bit algorithmic ADC utilizes the same hardware N-times for each bit of resolution. Due to the cyclic nature of algorithmic ADCs, many of the low power techniques applicable to pipelined ADCs cannot be directly applied to algorithmic ADCs. Consequently, compared to those of pipelined ADCs, the traditional implementations of algorithmic ADCs are power inefficient. This thesis presents two novel energy efficient techniques for algorithmic ADCs. The first technique modifies the capacitors' arrangement of a conventional flip-around configuration and amplifier sharing technique, resulting in a low power and low area design solution. The other technique is based on the unit multiplying-digital-to-analog-converter approach. The proposed approach exploits the power saving advantages of capacitor-shared technique and capacitor-scaled technique. It is shown that, compared to conventional techniques, the proposed techniques reduce the power consumption of algorithmic ADCs by more than 85\%. To verify the effectiveness of such approaches, two prototype chips, a 10-bit 5 MS/s and a 12-bit 10 MS/s ADCs, are implemented in a 130-nm CMOS process. Detailed design considerations are discussed as well as the simulation and measurement results. According to the simulation results, both designs achieve figures-of-merit of approximately 60 fJ/step, making them some of the most power efficient ADCs to date

    A 12-bit, 40 msamples/s, low-power, low-area pipeline analog-to-digital converter in CMOS 0.18 mum technology.

    Get PDF
    With advancements in digital signal processing in recent years, the need for high-speed, high-resolution analog-to-digital converters (ADCs) which can be used in the analog front-end has been increasing. Some examples of these applications are image and video signal processing, wireless communications and asymmetrical digital subscriber line (ADSL). In CMOS integrated circuit design, it is desirable to integrate the digital circuit and the ADC in one microchip to reduce the cost of fabrication. Consequently the power dissipation and area of the ADCs are important design factors. The original contributions in this thesis are as follows. Since the performance of pipeline ADCs significantly depends on the op-amps and comparators circuits, the performance of various comparators is analyzed and the effect of op-amp topology on the performance of pipeline ADCs is investigated. This thesis also presents a novel architecture for design of low-power and low-area pipelined ADCs which will be more useful for very low voltage applications in the future. At the schematic level, a low-power CMOS implementation of the current-mode MDAC is presented and an improved voltage comparator is designed. With the proposed design and the optimization methodology it is possible to reduce power dissipation and area compared with conventional fully differential schemes.Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .M64. Source: Masters Abstracts International, Volume: 43-01, page: 0281. Adviser: C. Chen. Thesis (M.A.Sc.)--University of Windsor (Canada), 2004

    Energy Efficient Techniques For Algorithmic Analog-To-Digital Converters

    Get PDF
    Analog-to-digital converters (ADCs) are key design blocks in state-of-art image, capacitive, and biomedical sensing applications. In these sensing applications, algorithmic ADCs are the preferred choice due to their high resolution and low area advantages. Algorithmic ADCs are based on the same operating principle as that of pipelined ADCs. Unlike pipelined ADCs where the residue is transferred to the next stage, an N-bit algorithmic ADC utilizes the same hardware N-times for each bit of resolution. Due to the cyclic nature of algorithmic ADCs, many of the low power techniques applicable to pipelined ADCs cannot be directly applied to algorithmic ADCs. Consequently, compared to those of pipelined ADCs, the traditional implementations of algorithmic ADCs are power inefficient. This thesis presents two novel energy efficient techniques for algorithmic ADCs. The first technique modifies the capacitors' arrangement of a conventional flip-around configuration and amplifier sharing technique, resulting in a low power and low area design solution. The other technique is based on the unit multiplying-digital-to-analog-converter approach. The proposed approach exploits the power saving advantages of capacitor-shared technique and capacitor-scaled technique. It is shown that, compared to conventional techniques, the proposed techniques reduce the power consumption of algorithmic ADCs by more than 85\%. To verify the effectiveness of such approaches, two prototype chips, a 10-bit 5 MS/s and a 12-bit 10 MS/s ADCs, are implemented in a 130-nm CMOS process. Detailed design considerations are discussed as well as the simulation and measurement results. According to the simulation results, both designs achieve figures-of-merit of approximately 60 fJ/step, making them some of the most power efficient ADCs to date

    Design of Power/Analog/Digital Systems Through Mixed-Level Simulations

    Get PDF
    In recent years the development of the applications in the field of telecommunications, data processing, control, renewable energy generation, consumer and automotive electronics determined the need for increasingly complex systems, also in shorter time to meet the growing market demand. The increasing complexity is mainly due to the mixed nature of these systems that must be developed to accommodate the new functionalities and to satisfy the more stringent performance requirements of the emerging applications. This means a more complex design and verification process. The key to managing the increased design complexity is a structured and integrated design methodology which allows the sharing of different circuit implementations that can be at transistor level and/or at a higher level (i.e.HDL languages).In order to expedite the mixed systems design process it is necessary to provide: an integrated design methodology; a suitable supporting tool able to manage the entire design process and design complexity and its successive verification.It is essential that the different system blocks (power, analog, digital), described at different level of abstraction, can be co-simulated in the same design context. This capability is referred to as mixed-level simulation.One of the objectives of this research is to design a mixed system application referred to the control of a coupled step-up dc-dc converter. This latter consists of a power stage designed at transistor-level, also including accurate power device models, and the analog controller implemented using VerilogA modules. Digital controllers are becoming very attractive in dc-dc converters for their programmability, ability to implement sophisticated control schemes, and ease of integration with other digital systems. Thus, in this dissertation it will be presented a detailed design of a Flash Analog-to-Digital Converter (ADC). The designed ADC provides medium-high resolution associated to high-speed performance. This makes it useful not only for the control application aforementioned but also for applications with huge requirements in terms of speed and signal bandwidth. The entire design flow of the overall system has been conducted in the Cadence Design Environment that also provides the ability to mixed-level simulations. Furthermore, the technology process used for the ADC design is the IHP BiCMOS 0.25 µm by using 50 GHz NPN HBT devices

    Design of high speed folding and interpolating analog-to-digital converter

    Get PDF
    High-speed and low resolution analog-to-digital converters (ADC) are key elements in the read channel of optical and magnetic data storage systems. The required resolution is about 6-7 bits while the sampling rate and effective resolution bandwidth requirements increase with each generation of storage system. Folding is a technique to reduce the number of comparators used in the flash architecture. By means of an analog preprocessing circuit in folding A/D converters the number of comparators can be reduced significantly. Folding architectures exhibit low power and low latency as well as the ability to run at high sampling rates. Folding ADCs employing interpolation schemes to generate extra folding waveforms are called "Folding and Interpolating ADC" (F&I ADC). The aim of this research is to increase the input bandwidth of high speed conversion, and low latency F&I ADC. Behavioral models are developed to analyze the bandwidth limitation at the architecture level. A front-end sample-and-hold unit is employed to tackle the frequency multiplication problem, which is intrinsic for all F&I ADCs. Current-mode signal processing is adopted to increase the bandwidth of the folding amplifiers and interpolators, which are the bottleneck of the whole system. An operational transconductance amplifier (OTA) based folding amplifier, current mirror-based interpolator, very low impedance fast current comparator are proposed and designed to carry out the current-mode signal processing. A new bit synchronization scheme is proposed to correct the error caused by the delay difference between the coarse and fine channels. A prototype chip was designed and fabricated in 0.35μm CMOS process to verify the ideas. The S/H and F&I ADC prototype is realized in 0.35μm double-poly CMOS process (only one poly is used). Integral nonlinearity (INL) is 1.0 LSB and Differential nonlinearity (DNL) is 0.6 LSB at 110 KHz. The ADC occupies 1.2mm2 active area and dissipates 200mW (excluding 70mW of S/H) from 3.3V supply. At 300MSPS sampling rate, the ADC achieves no less than 6 ENOB with input signal lower than 60MHz. It has the highest input bandwidth of 60MHz reported in the literature for this type of CMOS ADC with similar resolution and sample rate
    corecore