3 research outputs found

    A 0.1-to-1.2GHz tunable 6th-order N-path channel-select filter with 0.6dB passband ripple and +7dBm blocker tolerance

    Get PDF
    Radio receivers should be robust to large out-of-band blockers with small degradation in their sensitivity. N-path mixers can be used as mixer-first receivers [1] with good linearity and RF filtering [2]. However, 1/f noise calls for large active device sizes for IF circuits and high power consumption. The 1/f noise issue can be relaxed by having RF gain. However, to avoid desensitization by large out-of-band blockers, a bandpass filter (BPF) with sharp cut-off frequency is required in front of the RF amplifiers. gm-C BPFs suffer from tight tradeoffs among DR, power consumption, Q and fc. Also, on-chip Q-enhanced LC BPFs [3] are not suitable due to low DR, large area and non-tunability. Therefore, bulky and non-tunable SAW filters are used. N-path BPFs offer high Q while their center frequency is tuned by the clock frequency [2]. Compared to gm-C filters, this technique decouples the required Q from the DR. The 4-path filter in [4] has only 2nd-order filtering and limited rejection. The order and rejection of N-path BPFs can be increased by cascading [5], but this renders a “round” passband shape. The 4th-order 4-path BPF in [6] has a “flat” passband shape and high rejection but a high NF. This work solves the noise issue of [6] while achieving the same out-of-band linearity and adding 25dB of voltage gain to relax the noise requirement of the subsequent stages

    Design and Analysis of N-path Filter for Radio Frequencies

    Get PDF
    Due to the growth of wireless communication many communication frequencies have grown increasingly dense. This density requires higher Q-factor to receive only the signal of interest. With the rise of smaller integrated circuits previous solutions used for filtering have become viable again. This paper explores whether the N-path filter is viable in the modern day for radio frequency receiver purposes. A non-differential N-path filter was created by utilizing Cadence Virtuoso with a working center frequency range of 750MHz to 1GHz while using TSMC technology. The desired quality factor of over 1,000 was reached while maintaining a total area of 800 by 800 micrometers. Through the analysis of the N-path filter new techniques for mixed signal analysis were used for simulation. This included parametric analysis in Cadence ADE-L and additional analysis in MATLAB, and the addition of a bootstrapping circuit to decrease simulation time. Future applications regarding analyzing mixed signals could use these methods to provide frequency response data and automated processing
    corecore