1,062 research outputs found

    A Max-Plus Model of Asynchronous Cellular Automata

    Full text link
    This paper presents a new framework for asynchrony. This has its origins in our attempts to better harness the internal decision making process of cellular automata (CA). Thus, we show that a max-plus algebraic model of asynchrony arises naturally from the CA requirement that a cell receives the state of each neighbour before updating. The significant result is the existence of a bijective mapping between the asynchronous system and the synchronous system classically used to update cellular automata. Consequently, although the CA outputs look qualitatively different, when surveyed on "contours" of real time, the asynchronous CA replicates the synchronous CA. Moreover, this type of asynchrony is simple - it is characterised by the underlying network structure of the cells, and long-term behaviour is deterministic and periodic due to the linearity of max-plus algebra. The findings lead us to proffer max-plus algebra as: (i) a more accurate and efficient underlying timing mechanism for models of patterns seen in nature, and (ii) a foundation for promising extensions and applications.Comment: in Complex Systems (Complex Systems Publications Inc), Volume 23, Issue 4, 201

    On the decomposition of stochastic cellular automata

    Full text link
    In this paper we present two interesting properties of stochastic cellular automata that can be helpful in analyzing the dynamical behavior of such automata. The first property allows for calculating cell-wise probability distributions over the state set of a stochastic cellular automaton, i.e. images that show the average state of each cell during the evolution of the stochastic cellular automaton. The second property shows that stochastic cellular automata are equivalent to so-called stochastic mixtures of deterministic cellular automata. Based on this property, any stochastic cellular automaton can be decomposed into a set of deterministic cellular automata, each of which contributes to the behavior of the stochastic cellular automaton.Comment: Submitted to Journal of Computation Science, Special Issue on Cellular Automata Application

    Nature-Inspired Interconnects for Self-Assembled Large-Scale Network-on-Chip Designs

    Get PDF
    Future nano-scale electronics built up from an Avogadro number of components needs efficient, highly scalable, and robust means of communication in order to be competitive with traditional silicon approaches. In recent years, the Networks-on-Chip (NoC) paradigm emerged as a promising solution to interconnect challenges in silicon-based electronics. Current NoC architectures are either highly regular or fully customized, both of which represent implausible assumptions for emerging bottom-up self-assembled molecular electronics that are generally assumed to have a high degree of irregularity and imperfection. Here, we pragmatically and experimentally investigate important design trade-offs and properties of an irregular, abstract, yet physically plausible 3D small-world interconnect fabric that is inspired by modern network-on-chip paradigms. We vary the framework's key parameters, such as the connectivity, the number of switch nodes, the distribution of long- versus short-range connections, and measure the network's relevant communication characteristics. We further explore the robustness against link failures and the ability and efficiency to solve a simple toy problem, the synchronization task. The results confirm that (1) computation in irregular assemblies is a promising and disruptive computing paradigm for self-assembled nano-scale electronics and (2) that 3D small-world interconnect fabrics with a power-law decaying distribution of shortcut lengths are physically plausible and have major advantages over local 2D and 3D regular topologies

    Rule switching mechanisms in the Game of Life with synchronous and asynchronous updating policy

    Full text link
    The emergence of complex structures in the systems governed by a simple set of rules is among the most fascinating aspects of Nature. The particularly powerful and versatile model suitable for investigating this phenomenon is provided by cellular automata, with the Game of Life being one of the most prominent examples. However, this simplified model can be too limiting in providing a tool for modelling real systems. To address this, we introduce and study an extended version of the Game of Life, with the dynamical process governing the rule selection at each step. We show that the introduced modification significantly alters the behaviour of the game. We also demonstrate that the choice of the synchronization policy can be used to control the trade-off between the stability and the growth in the system.Comment: 14 pages, 5+1 figures, code available at https://doi.org/10.5281/zenodo.809960
    • …
    corecore