2,237 research outputs found

    Machine learning methods for histopathological image analysis

    Full text link
    Abundant accumulation of digital histopathological images has led to the increased demand for their analysis, such as computer-aided diagnosis using machine learning techniques. However, digital pathological images and related tasks have some issues to be considered. In this mini-review, we introduce the application of digital pathological image analysis using machine learning algorithms, address some problems specific to such analysis, and propose possible solutions.Comment: 23 pages, 4 figure

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Nuclei & Glands Instance Segmentation in Histology Images: A Narrative Review

    Full text link
    Instance segmentation of nuclei and glands in the histology images is an important step in computational pathology workflow for cancer diagnosis, treatment planning and survival analysis. With the advent of modern hardware, the recent availability of large-scale quality public datasets and the community organized grand challenges have seen a surge in automated methods focusing on domain specific challenges, which is pivotal for technology advancements and clinical translation. In this survey, 126 papers illustrating the AI based methods for nuclei and glands instance segmentation published in the last five years (2017-2022) are deeply analyzed, the limitations of current approaches and the open challenges are discussed. Moreover, the potential future research direction is presented and the contribution of state-of-the-art methods is summarized. Further, a generalized summary of publicly available datasets and a detailed insights on the grand challenges illustrating the top performing methods specific to each challenge is also provided. Besides, we intended to give the reader current state of existing research and pointers to the future directions in developing methods that can be used in clinical practice enabling improved diagnosis, grading, prognosis, and treatment planning of cancer. To the best of our knowledge, no previous work has reviewed the instance segmentation in histology images focusing towards this direction.Comment: 60 pages, 14 figure

    Hybrid Approach of Relation Network and Localized Graph Convolutional Filtering for Breast Cancer Subtype Classification

    Full text link
    Network biology has been successfully used to help reveal complex mechanisms of disease, especially cancer. On the other hand, network biology requires in-depth knowledge to construct disease-specific networks, but our current knowledge is very limited even with the recent advances in human cancer biology. Deep learning has shown a great potential to address the difficult situation like this. However, deep learning technologies conventionally use grid-like structured data, thus application of deep learning technologies to the classification of human disease subtypes is yet to be explored. Recently, graph based deep learning techniques have emerged, which becomes an opportunity to leverage analyses in network biology. In this paper, we proposed a hybrid model, which integrates two key components 1) graph convolution neural network (graph CNN) and 2) relation network (RN). We utilize graph CNN as a component to learn expression patterns of cooperative gene community, and RN as a component to learn associations between learned patterns. The proposed model is applied to the PAM50 breast cancer subtype classification task, the standard breast cancer subtype classification of clinical utility. In experiments of both subtype classification and patient survival analysis, our proposed method achieved significantly better performances than existing methods. We believe that this work is an important starting point to realize the upcoming personalized medicine.Comment: 8 pages, To be published in proceeding of IJCAI 201

    An Aggregation of Aggregation Methods in Computational Pathology

    Full text link
    Image analysis and machine learning algorithms operating on multi-gigapixel whole-slide images (WSIs) often process a large number of tiles (sub-images) and require aggregating predictions from the tiles in order to predict WSI-level labels. In this paper, we present a review of existing literature on various types of aggregation methods with a view to help guide future research in the area of computational pathology (CPath). We propose a general CPath workflow with three pathways that consider multiple levels and types of data and the nature of computation to analyse WSIs for predictive modelling. We categorize aggregation methods according to the context and representation of the data, features of computational modules and CPath use cases. We compare and contrast different methods based on the principle of multiple instance learning, perhaps the most commonly used aggregation method, covering a wide range of CPath literature. To provide a fair comparison, we consider a specific WSI-level prediction task and compare various aggregation methods for that task. Finally, we conclude with a list of objectives and desirable attributes of aggregation methods in general, pros and cons of the various approaches, some recommendations and possible future directions.Comment: 32 pages, 4 figure

    Informative sample generation using class aware generative adversarial networks for classification of chest Xrays

    Full text link
    Training robust deep learning (DL) systems for disease detection from medical images is challenging due to limited images covering different disease types and severity. The problem is especially acute, where there is a severe class imbalance. We propose an active learning (AL) framework to select most informative samples for training our model using a Bayesian neural network. Informative samples are then used within a novel class aware generative adversarial network (CAGAN) to generate realistic chest xray images for data augmentation by transferring characteristics from one class label to another. Experiments show our proposed AL framework is able to achieve state-of-the-art performance by using about 35%35\% of the full dataset, thus saving significant time and effort over conventional methods

    Impact of Image Preprocessing Methods and Deep Learning Models for Classifying Histopathological Breast Cancer Images

    Get PDF
    Early diagnosis of cancer is very important as it significantly increases the chances of appropriate treatment and survival. To this end, Deep Learning models are increasingly used in the classification and segmentation of histopathological images, as they obtain high accuracy index and can help specialists. In most cases, images need to be preprocessed for these models to work correctly. In this paper, a comparative study of different preprocessing methods and deep learning models for a set of breast cancer images is presented. For this purpose, the statistical test ANOVA with data obtained from the performance of five different deep learning models is analyzed. An important conclusion from this test can be obtained; from the point of view of the accuracy of the system, the main repercussion is the deep learning models used, however, the filter used for the preprocessing of the image, has no statistical significance for the behavior of the system.Spanish Government PID2021-128317OB-I00Government of Andalusia P20-0016

    CAMIL: Context-Aware Multiple Instance Learning for Cancer Detection and Subtyping in Whole Slide Images

    Full text link
    The visual examination of tissue biopsy sections is fundamental for cancer diagnosis, with pathologists analyzing sections at multiple magnifications to discern tumor cells and their subtypes. However, existing attention-based multiple instance learning (MIL) models, used for analyzing Whole Slide Images (WSIs) in cancer diagnostics, often overlook the contextual information of tumor and neighboring tiles, leading to misclassifications. To address this, we propose the Context-Aware Multiple Instance Learning (CAMIL) architecture. CAMIL incorporates neighbor-constrained attention to consider dependencies among tiles within a WSI and integrates contextual constraints as prior knowledge into the MIL model. We evaluated CAMIL on subtyping non-small cell lung cancer (TCGA-NSCLC) and detecting lymph node (CAMELYON16) metastasis, achieving test AUCs of 0.959\% and 0.975\%, respectively, outperforming other state-of-the-art methods. Additionally, CAMIL enhances model interpretability by identifying regions of high diagnostic value.Comment: 16 pages, 4 figure
    corecore