3,498 research outputs found

    Adaptive Multiscale Weighted Permutation Entropy for Rolling Bearing Fault Diagnosis

    Get PDF
    ยฉ 2020 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.Bearing vibration signals contain non-linear and non-stationary features due to instantaneous variations in the operation of rotating machinery. It is important to characterize and analyze the complexity change of the bearing vibration signals so that bearing health conditions can be accurately identified. Entropy measures are non-linear indicators that are applicable to the time series complexity analysis for machine fault diagnosis. In this paper, an improved entropy measure, termed Adaptive Multiscale Weighted Permutation Entropy (AMWPE), is proposed. Then, a new rolling bearing fault diagnosis method is developed based on the AMWPE and multi-class SVM. For comparison, experimental bearing data are analyzed using the AMWPE, compared with the conventional entropy measures, where a multi-class SVM is adopted for fault type classification. Moreover, the robustness of different entropy measures is further studied for the analysis of noisy signals with various Signal-to-Noise Ratios (SNRs). The experimental results have demonstrated the effectiveness of the proposed method in fault diagnosis of rolling bearing under different fault types, severity degrees, and SNR levels.Peer reviewedFinal Accepted Versio

    ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ๊ณ ์žฅ ์ง„๋‹จ์„ ์œ„ํ•œ ์ •๋ณด ํ™œ์šฉ ๊ทน๋Œ€ํ™” ๊ธฐ๋ฒ• ๊ฐœ๋ฐœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2021.8. ์œค๋ณ‘๋™.๊ธฐ๊ณ„ ์‹œ์Šคํ…œ์˜ ์˜ˆ๊ธฐ์น˜ ์•Š์€ ๊ณ ์žฅ์€ ๋งŽ์€ ์‚ฐ์—… ๋ถ„์•ผ์—์„œ ๋ง‰๋Œ€ํ•œ ์‚ฌํšŒ์ , ๊ฒฝ์ œ์  ์†์‹ค์„ ์•ผ๊ธฐํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ฐ‘์ž‘์Šค๋Ÿฐ ๊ณ ์žฅ์„ ๊ฐ์ง€ํ•˜๊ณ  ์˜ˆ๋ฐฉํ•˜์—ฌ ๊ธฐ๊ณ„ ์‹œ์Šคํ…œ์˜ ์‹ ๋ขฐ์„ฑ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๊ณ ์žฅ ์ง„๋‹จ ๊ธฐ์ˆ ์„ ๊ฐœ๋ฐœํ•˜๊ธฐ ์œ„ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํ•˜๊ฒŒ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค. ๊ณ ์žฅ ์ง„๋‹จ ๊ธฐ์ˆ ์˜ ๋ชฉํ‘œ๋Š” ๋Œ€์ƒ ๊ธฐ๊ณ„ ์‹œ์Šคํ…œ์˜ ๊ณ ์žฅ ๋ฐœ์ƒ์„ ๊ฐ€๋Šฅํ•œ ๋นจ๋ฆฌ ๊ฐ์ง€ํ•˜๊ณ  ์ง„๋‹จํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ตœ๊ทผ ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง ๊ธฐ๋ฒ•์„ ํฌํ•จํ•œ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ๊ณ ์žฅ ์ง„๋‹จ ๊ธฐ์ˆ ์€ ์ž์œจ์ ์ธ ํŠน์„ฑ์ธ์ž(feature) ํ•™์Šต์ด ๊ฐ€๋Šฅํ•˜๊ณ  ๋†’์€ ์ง„๋‹จ ์„ฑ๋Šฅ์„ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ์–ด ํ™œ๋ฐœํžˆ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜์˜ ๊ณ ์žฅ ์ง„๋‹จ ๊ธฐ์ˆ ์„ ๊ฐœ๋ฐœํ•จ์— ์žˆ์–ด ํ•ด๊ฒฐํ•ด์•ผ ํ•  ๋ช‡ ๊ฐ€์ง€ ๋ฌธ์ œ์ ๋“ค์ด ์กด์žฌํ•œ๋‹ค. ๋จผ์ €, ์‹ ๊ฒฝ๋ง ๊ตฌ์กฐ๋ฅผ ๊นŠ๊ฒŒ ์Œ“์Œ์œผ๋กœ์จ ํ’๋ถ€ํ•œ ๊ณ„์ธต์  ํŠน์„ฑ์ธ์ž๋“ค์„ ๋ฐฐ์šธ ์ˆ˜ ์žˆ๊ณ , ์ด๋ฅผ ํ†ตํ•ด ํ–ฅ์ƒ๋œ ์„ฑ๋Šฅ์„ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ธฐ์šธ๊ธฐ(gradient) ์ •๋ณด ํ๋ฆ„์˜ ๋น„ํšจ์œจ์„ฑ๊ณผ ๊ณผ์ ํ•ฉ ๋ฌธ์ œ๋กœ ์ธํ•ด ๋ชจ๋ธ์ด ๊นŠ์–ด์งˆ์ˆ˜๋ก ํ•™์Šต์ด ์–ด๋ ต๊ฒŒ ๋œ๋‹ค๋Š” ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค. ๋‹ค์Œ์œผ๋กœ, ๋†’์€ ์„ฑ๋Šฅ์˜ ๊ณ ์žฅ ์ง„๋‹จ ๋ชจ๋ธ์„ ํ•™์Šตํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ถฉ๋ถ„ํ•œ ์–‘์˜ ๋ ˆ์ด๋ธ” ๋ฐ์ดํ„ฐ(labeled data)๊ฐ€ ํ™•๋ณด๋ผ์•ผ ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‹ค์ œ ํ˜„์žฅ์—์„œ ์šด์šฉ๋˜๊ณ  ์žˆ๋Š” ๊ธฐ๊ณ„ ์‹œ์Šคํ…œ์˜ ๊ฒฝ์šฐ, ์ถฉ๋ถ„ํ•œ ์–‘์˜ ๋ฐ์ดํ„ฐ์™€ ๋ ˆ์ด๋ธ” ์ •๋ณด๋ฅผ ์–ป๋Š” ๊ฒƒ์ด ์–ด๋ ค์šด ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. ๋”ฐ๋ผ์„œ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋“ค์„ ํ•ด๊ฒฐํ•˜๊ณ  ์ง„๋‹จ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ๊ณ ์žฅ ์ง„๋‹จ ๊ธฐ์ˆ ์˜ ๊ฐœ๋ฐœ์ด ํ•„์š”ํ•˜๋‹ค. ๋ณธ ๋ฐ•์‚ฌํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ๊ณ ์žฅ ์ง„๋‹จ ๊ธฐ์ˆ ์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์„ธ๊ฐ€์ง€ ์ •๋ณด ํ™œ์šฉ ๊ทน๋Œ€ํ™” ๊ธฐ๋ฒ•์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋กœ 1) ๋”ฅ๋Ÿฌ๋‹ ์•„ํ‚คํ…์ฒ˜ ๋‚ด ๊ธฐ์šธ๊ธฐ ์ •๋ณด ํ๋ฆ„์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๋”ฅ๋Ÿฌ๋‹ ๊ตฌ์กฐ ์—ฐ๊ตฌ, 2) ํŒŒ๋ผ๋ฏธํ„ฐ ์ „์ด ๋ฐ ์‚ผ์ค‘ํ•ญ ์†์‹ค์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ถˆ์ถฉ๋ถ„ํ•œ ๋ฐ์ดํ„ฐ ๋ฐ ๋…ธ์ด์ฆˆ ์กฐ๊ฑด ํ•˜ ๊ฐ•๊ฑดํ•˜๊ณ  ์ฐจ๋ณ„์ ์ธ ํŠน์„ฑ์ธ์ž ํ•™์Šต์— ๋Œ€ํ•œ ์—ฐ๊ตฌ, 3) ๋‹ค๋ฅธ ๋„๋ฉ”์ธ์œผ๋กœ๋ถ€ํ„ฐ ๋ ˆ์ด๋ธ” ์ •๋ณด๋ฅผ ์ „์ด์‹œ์ผœ ์‚ฌ์šฉํ•˜๋Š” ๋„๋ฉ”์ธ ์ ์‘ ๊ธฐ๋ฐ˜ ๊ณ ์žฅ ์ง„๋‹จ ๊ธฐ๋ฒ• ์—ฐ๊ตฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ ๋‚ด ๊ธฐ์šธ๊ธฐ ์ •๋ณด ํ๋ฆ„์„ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•œ ํ–ฅ์ƒ๋œ ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง ๊ธฐ๋ฐ˜ ๊ตฌ์กฐ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‹ค์–‘ํ•œ ๊ณ„์ธต์˜ ์•„์›ƒํ’‹(feature map)์„ ์ง์ ‘ ์—ฐ๊ฒฐํ•จ์œผ๋กœ์จ ํ–ฅ์ƒ๋œ ์ •๋ณด ํ๋ฆ„์„ ์–ป์„ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๊ทธ ๊ฒฐ๊ณผ ์ง„๋‹จ ๋ชจ๋ธ์„ ํšจ์œจ์ ์œผ๋กœ ํ•™์Šตํ•˜๋Š” ๊ฒƒ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๋˜ํ•œ ์ฐจ์› ์ถ•์†Œ ๋ชจ๋“ˆ์„ ํ†ตํ•ด ํ•™์Šต ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๋ฅผ ํฌ๊ฒŒ ์ค„์ž„์œผ๋กœ์จ ํ•™์Šต ํšจ์œจ์„ฑ์„ ๋†’์ผ ์ˆ˜ ์žˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ์—ฐ๊ตฌ์—์„œ๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ ์ „์ด ๋ฐ ๋ฉ”ํŠธ๋ฆญ ํ•™์Šต ๊ธฐ๋ฐ˜ ๊ณ ์žฅ ์ง„๋‹จ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๋ฐ์ดํ„ฐ๊ฐ€ ๋ถˆ์ถฉ๋ถ„ํ•˜๊ณ  ๋…ธ์ด์ฆˆ๊ฐ€ ๋งŽ์€ ์กฐ๊ฑด ํ•˜์—์„œ๋„ ๋†’์€ ๊ณ ์žฅ ์ง„๋‹จ ์„ฑ๋Šฅ์„ ์–ป๊ธฐ ์œ„ํ•ด ๊ฐ•๊ฑดํ•˜๊ณ  ์ฐจ๋ณ„์ ์ธ ํŠน์„ฑ์ธ์ž ํ•™์Šต์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค. ๋จผ์ €, ํ’๋ถ€ํ•œ ์†Œ์Šค ๋„๋ฉ”์ธ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•ด ํ›ˆ๋ จ๋œ ์‚ฌ์ „ํ•™์Šต๋ชจ๋ธ์„ ํƒ€๊ฒŸ ๋„๋ฉ”์ธ์œผ๋กœ ์ „์ดํ•ด ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ๊ฐ•๊ฑดํ•œ ์ง„๋‹จ ๋ฐฉ๋ฒ•์„ ๊ฐœ๋ฐœํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, semi-hard ์‚ผ์ค‘ํ•ญ ์†์‹ค ํ•จ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ๊ฐ ์ƒํƒœ ๋ ˆ์ด๋ธ”์— ๋”ฐ๋ผ ๋ฐ์ดํ„ฐ๊ฐ€ ๋” ์ž˜ ๋ถ„๋ฆฌ๋˜๋„๋ก ํ•ด์ฃผ๋Š” ํŠน์„ฑ์ธ์ž๋ฅผ ํ•™์Šตํ•  ์ˆ˜ ์žˆ๋‹ค. ์„ธ ๋ฒˆ์งธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ ˆ์ด๋ธ”์ด ์ง€์ •๋˜์ง€ ์•Š์€(unlabeled) ๋Œ€์ƒ ๋„๋ฉ”์ธ์—์„œ์˜ ๊ณ ์žฅ ์ง„๋‹จ ์„ฑ๋Šฅ์„ ๋†’์ด๊ธฐ ์œ„ํ•œ ๋ ˆ์ด๋ธ” ์ •๋ณด ์ „์ด ์ „๋žต์„ ์ œ์•ˆํ•œ๋‹ค. ์šฐ๋ฆฌ๊ฐ€ ๋ชฉํ‘œ๋กœ ํ•˜๋Š” ๋Œ€์ƒ ๋„๋ฉ”์ธ์—์„œ์˜ ๊ณ ์žฅ ์ง„๋‹จ ๋ฐฉ๋ฒ•์„ ๊ฐœ๋ฐœํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค๋ฅธ ์†Œ์Šค ๋„๋ฉ”์ธ์—์„œ ์–ป์€ ๋ ˆ์ด๋ธ” ์ •๋ณด๊ฐ€ ์ „์ด๋˜์–ด ํ™œ์šฉ๋œ๋‹ค. ๋™์‹œ์— ์ƒˆ๋กญ๊ฒŒ ๊ณ ์•ˆํ•œ ์˜๋ฏธ๋ก ์  ํด๋Ÿฌ์Šคํ„ฐ๋ง ์†์‹ค(semantic clustering loss)์„ ์—ฌ๋Ÿฌ ํŠน์„ฑ์ธ์ž ์ˆ˜์ค€์— ์ ์šฉํ•จ์œผ๋กœ์จ ์ฐจ๋ณ„์ ์ธ ๋„๋ฉ”์ธ ๋ถˆ๋ณ€ ๊ธฐ๋Šฅ์„ ํ•™์Šตํ•œ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ๋„๋ฉ”์ธ ๋ถˆ๋ณ€ ํŠน์„ฑ์„ ๊ฐ€์ง€๋ฉฐ ์˜๋ฏธ๋ก ์ ์œผ๋กœ ์ž˜ ๋ถ„๋ฅ˜๋˜๋Š” ํŠน์„ฑ์ธ์ž๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ•™์Šตํ•  ์ˆ˜ ์žˆ์Œ์„ ์ฆ๋ช…ํ•˜์˜€๋‹ค.Unexpected failures of mechanical systems can lead to substantial social and financial losses in many industries. In order to detect and prevent sudden failures and to enhance the reliability of mechanical systems, significant research efforts have been made to develop data-driven fault diagnosis techniques. The purpose of fault diagnosis techniques is to detect and identify the occurrence of abnormal behaviors in the target mechanical systems as early as possible. Recently, deep learning (DL) based fault diagnosis approaches, including the convolutional neural network (CNN) method, have shown remarkable fault diagnosis performance, thanks to their autonomous feature learning ability. Still, there are several issues that remain to be solved in the development of robust and industry-applicable deep learning-based fault diagnosis techniques. First, by stacking the neural network architectures deeper, enriched hierarchical features can be learned, and therefore, improved performance can be achieved. However, due to inefficiency in the gradient information flow and overfitting problems, deeper models cannot be trained comprehensively. Next, to develop a fault diagnosis model with high performance, it is necessary to obtain sufficient labeled data. However, for mechanical systems that operate in real-world environments, it is not easy to obtain sufficient data and label information. Consequently, novel methods that address these issues should be developed to improve the performance of deep learning based fault diagnosis techniques. This dissertation research investigated three research thrusts aimed toward maximizing the use of information to improve the performance of deep learning based fault diagnosis techniques, specifically: 1) study of the deep learning structure to enhance the gradient information flow within the architecture, 2) study of a robust and discriminative feature learning method under insufficient and noisy data conditions based on parameter transfer and triplet loss, and 3) investigation of a domain adaptation based fault diagnosis method that propagates the label information across different domains. The first research thrust suggests an advanced CNN-based architecture to improve the gradient information flow within the deep learning model. By directly connecting the feature maps of different layers, the diagnosis model can be trained efficiently thanks to enhanced information flow. In addition, the dimension reduction module also can increase the training efficiency by significantly reducing the number of trainable parameters. The second research thrust suggests a parameter transfer and metric learning based fault diagnosis method. The proposed approach facilitates robust and discriminative feature learning to enhance fault diagnosis performance under insufficient and noisy data conditions. The pre-trained model trained using abundant source domain data is transferred and used to develop a robust fault diagnosis method. Moreover, a semi-hard triplet loss function is adopted to learn the features with high separability, according to the class labels. Finally, the last research thrust proposes a label information propagation strategy to increase the fault diagnosis performance in the unlabeled target domain. The label information obtained from the source domain is transferred and utilized for developing fault diagnosis methods in the target domain. Simultaneously, the newly devised semantic clustering loss is applied at multiple feature levels to learn discriminative, domain-invariant features. As a result, features that are not only semantically well-clustered but also domain-invariant can be effectively learned.Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Research Scope and Overview 3 1.3 Dissertation Layout 6 Chapter 2 Technical Background and Literature Review 8 2.1 Fault Diagnosis Techniques for Mechanical Systems 8 2.1.1 Fault Diagnosis Techniques 10 2.1.2 Deep Learning Based Fault Diagnosis Techniques 15 2.2 Transfer Learning 22 2.3 Metric Learning 28 2.4 Summary and Discussion 30 Chapter 3 Direct Connection Based Convolutional Neural Network (DC-CNN) for Fault Diagnosis 31 3.1 Directly Connected Convolutional Module 33 3.2 Dimension Reduction Module 34 3.3 Input Vibration Image Generation 36 3.4 DC-CNN-Based Fault Diagnosis Method 40 3.5 Experimental Studies and Results 45 3.5.1 Experiment and Data Description 45 3.5.2 Compared Methods 48 3.5.3 Diagnosis Performance Results 51 3.5.4 The Number of Trainable Parameters 56 3.5.5 Visualization of the Learned Features 58 3.5.6 Robustness of Diagnosis Performance 62 3.6 Summary and Discussion 67 Chapter 4 Robust and Discriminative Feature Learning for Fault Diagnosis Under Insufficient and Noisy Data Conditions 68 4.1 Parameter transfer learning 70 4.2 Robust Feature Learning Based on the Pre-trained model 72 4.3 Discriminative Feature Learning Based on the Triplet loss 77 4.4 Robust and Discriminative Feature Learning for Fault Diagnosis 80 4.5 Experimental Studies and Results 84 4.5.1 Experiment and Data Description 84 4.5.2 Compared Methods 85 4.5.3 Experimental Results Under Insufficient Data Conditions 86 4.5.4 Experimental Results Under Noisy Data Conditions 92 4.6 Summary and Discussion 95 Chapter 5 A Domain Adaptation with Semantic Clustering (DASC) Method for Fault Diagnosis 96 5.1 Unsupervised Domain Adaptation 101 5.2 CNN-based Diagnosis Model 104 5.3 Learning of Domain-invariant Features 105 5.4 Domain Adaptation with Semantic Clustering 107 5.5 Proposed DASC-based Fault Diagnosis Method 109 5.6 Experimental Studies and Results 114 5.6.1 Experiment and Data Description 114 5.6.2 Compared Methods 117 5.6.3 Scenario I: Different Operating Conditions 118 5.6.4 Scenario II: Different Rotating Machinery 125 5.6.5 Analysis and Discussion 131 5.7 Summary and Discussion 140 Chapter 6 Conclusion 141 6.1 Contributions and Significance 141 6.2 Suggestions for Future Research 143 References 146 ๊ตญ๋ฌธ ์ดˆ๋ก 154๋ฐ•

    Online Bearing Remaining Useful Life Prediction Based on a Novel Degradation Indicator and Convolutional Neural Networks

    Full text link
    In industrial applications, nearly half the failures of motors are caused by the degradation of rolling element bearings (REBs). Therefore, accurately estimating the remaining useful life (RUL) for REBs are of crucial importance to ensure the reliability and safety of mechanical systems. To tackle this challenge, model-based approaches are often limited by the complexity of mathematical modeling. Conventional data-driven approaches, on the other hand, require massive efforts to extract the degradation features and construct health index. In this paper, a novel online data-driven framework is proposed to exploit the adoption of deep convolutional neural networks (CNN) in predicting the RUL of bearings. More concretely, the raw vibrations of training bearings are first processed using the Hilbert-Huang transform (HHT) and a novel nonlinear degradation indicator is constructed as the label for learning. The CNN is then employed to identify the hidden pattern between the extracted degradation indicator and the vibration of training bearings, which makes it possible to estimate the degradation of the test bearings automatically. Finally, testing bearings' RULs are predicted by using a ฯต\epsilon-support vector regression model. The superior performance of the proposed RUL estimation framework, compared with the state-of-the-art approaches, is demonstrated through the experimental results. The generality of the proposed CNN model is also validated by transferring to bearings undergoing different operating conditions

    Rotating Machinery Diagnostics Using Deep Learning on Orbit Plot Images

    Get PDF
    Although the orbit analysis (orbit shape and size) is commonly used to diagnose rotating machinery, the diagnosis heavily depends on the expert knowledge or experience due to the difficulties of extracting mathematical features for data-driven approaches. Therefore, in this paper, we propose an autonomous orbit pattern recognition algorithm using the deep learning method on shaft orbit shape images. In details, the convolutional neural network is implemented to construct weights between neurons and to generate the entire structure of the neural network. Then, the created network enables us to classify fault modes of rotating machinery via orbit images. Furthermore, we demonstrate the proposed framework through a rotating testbed

    ๋ถˆ์ถฉ๋ถ„ํ•œ ๊ณ ์žฅ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ํšŒ์ „ ๊ธฐ๊ณ„ ์ง„๋‹จ๊ธฐ์ˆ  ํ•™์Šต๋ฐฉ๋ฒ• ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€,2020. 2. ์œค๋ณ‘๋™.Deep Learning is a promising approach for fault diagnosis in mechanical applications. Deep learning techniques are capable of processing lots of data in once, and modelling them into desired diagnostic model. In industrial fields, however, we can acquire tons of data but barely useful including fault or failure data because failure in industrial fields is usually unacceptable. To cope with this insufficient fault data problem to train diagnostic model for rotating machinery, this thesis proposes three research thrusts: 1) filter-envelope blocks in convolution neural networks (CNNs) to incorporate the preprocessing steps for vibration signal; frequency filtering and envelope extraction for more optimal solution and reduced efforts in building diagnostic model, 2) cepstrum editing based data augmentation (CEDA) for diagnostic dataset consist of vibration signals from rotating machinery, and 3) selective parameter freezing (SPF) for efficient parameter transfer in transfer learning. The first research thrust proposes noble types of functional blocks for neural networks in order to learn robust feature to the vibration data. Conventional neural networks including convolution neural network (CNN), is tend to learn biased features when the training data is acquired from small cases of conditions. This can leads to unfavorable performance to the different conditions or other similar equipment. Therefore this research propose two neural network blocks which can be incorporated to the conventional neural networks and minimize the preprocessing steps, filter block and envelope block. Each block is designed to learn frequency filter and envelope extraction function respectively, in order to induce the neural network to learn more robust and generalized features from limited vibration samples. The second thrust presents a new data augmentation technique specialized for diagnostic data of vibration signals. Many data augmentation techniques exist for image data with no consideration for properties of vibration data. Conventional techniques for data augmentation, such as flipping, rotating, or shearing are not proper for 1-d vibration data can harm the natural property of vibration signal. To augment vibration data without losing the properties of its physics, the proposed method generate new samples by editing the cepstrum which can be done by adjusting the cepstrum component of interest. By doing reverse transform to the edited cepstrum, the new samples is obtained and this results augmented dataset which leads to higher accuracy for the diagnostic model. The third research thrust suggests a new parameter repurposing method for parameter transfer, which is used for transfer learning. The proposed SPF selectively freezes transferred parameters from source network and re-train only unnecessary parameters for target domain to reduce overfitting and preserve useful source features when the target data is limited to train diagnostic model.๋”ฅ๋Ÿฌ๋‹์€ ๊ธฐ๊ณ„ ์‘์šฉ ๋ถ„์•ผ์˜ ๊ฒฐํ•จ ์ง„๋‹จ์„ ์œ„ํ•œ ์œ ๋งํ•œ ์ ‘๊ทผ ๋ฐฉ์‹์ด๋‹ค. ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ์ˆ ์€ ๋งŽ์€ ์–‘์˜ ๋ฐ์ดํ„ฐ๋ฅผ ํ•™์Šตํ•˜์—ฌ ์ง„๋‹จ ๋ชจ๋ธ์˜ ๊ฐœ๋ฐœ์„ ์šฉ์ดํ•˜๊ฒŒ ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‚ฐ์—… ๋ถ„์•ผ์—์„œ๋Š” ๋งŽ์€ ์–‘์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์–ป์„ ์ˆ˜ ์—†๊ฑฐ๋‚˜ ์–ป์„ ์ˆ˜ ์žˆ๋”๋ผ๋„ ๊ณ ์žฅ ๋ฐ์ดํ„ฐ๋Š” ์ผ๋ฐ˜์ ์œผ๋กœ ํš๋“ํ•˜๊ธฐ ๋งค์šฐ ์–ด๋ ต๊ธฐ ๋•Œ๋ฌธ์— ๋”ฅ๋Ÿฌ๋‹ ๋ฐฉ๋ฒ•์˜ ์‚ฌ์šฉ์€ ์‰ฝ์ง€ ์•Š๋‹ค. ํšŒ์ „ ๊ธฐ๊ณ„์˜ ์ง„๋‹จ์„ ์œ„ํ•˜์—ฌ ๋”ฅ๋Ÿฌ๋‹์„ ํ•™์Šต์‹œํ‚ฌ ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ๊ณ ์žฅ ๋ฐ์ดํ„ฐ ๋ถ€์กฑ ๋ฌธ์ œ์— ๋Œ€์ฒ˜ํ•˜๊ธฐ ์œ„ํ•ด ์ด ๋…ผ๋ฌธ์€ 3 ๊ฐ€์ง€ ์—ฐ๊ตฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. 1) ํ–ฅ์ƒ๋œ ์ง„๋™ ํŠน์ง• ํ•™์Šต์„ ์œ„ํ•œ ํ•„ํ„ฐ-์—”๋ฒจ๋กญ ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ 2) ์ง„๋™๋ฐ์ดํ„ฐ ์ƒ์„ฑ์„ ์œ„ํ•œ Cepstrum ๊ธฐ๋ฐ˜ ๋ฐ์ดํ„ฐ ์ฆ๋Ÿ‰๋ฒ•3) ์ „์ด ํ•™์Šต์—์„œ ํšจ์œจ์ ์ธ ํŒŒ๋ผ๋ฏธํ„ฐ ์ „์ด๋ฅผ ์œ„ํ•œ ์„ ํƒ์  ํŒŒ๋ผ๋ฏธํ„ฐ ๋™๊ฒฐ๋ฒ•. ์ฒซ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ์ง„๋™ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ๊ฐ•๊ฑดํ•œ ํŠน์ง•์„ ๋ฐฐ์šฐ๊ธฐ ์œ„ํ•ด ์‹ ๊ฒฝ๋ง์— ๋Œ€ํ•œ ์ƒˆ๋กœ์šด ํ˜•ํƒœ์˜ ๋„คํŠธ์›Œํฌ ๋ธ”๋ก๋“ค์„ ์ œ์•ˆํ•œ๋‹ค. ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง์„ ํฌํ•จํ•˜๋Š” ์ข…๋ž˜์˜ ์‹ ๊ฒฝ๋ง์€ ํ•™์Šต ๋ฐ์ดํ„ฐ๊ฐ€ ์ž‘์€ ๊ฒฝ์šฐ์— ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ํŽธํ–ฅ๋œ ํŠน์ง•์„ ๋ฐฐ์šฐ๋Š” ๊ฒฝํ–ฅ์ด ์žˆ์œผ๋ฉฐ, ์ด๋Š” ๋‹ค๋ฅธ ์กฐ๊ฑด์—์„œ ์ž‘๋™ํ•˜๋Š” ๊ฒฝ์šฐ๋‚˜ ๋‹ค๋ฅธ ์‹œ์Šคํ…œ์— ๋Œ€ํ•ด ์ ์šฉ๋˜์—ˆ์„ ๋•Œ ๋‚ฎ์€ ์ง„๋‹จ ์„ฑ๋Šฅ์„ ๋ณด์ธ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ธฐ์กด์˜ ์‹ ๊ฒฝ๋ง์— ํ•จ๊ป˜ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋Š” ํ•„ํ„ฐ ๋ธ”๋ก ๋ฐ ์—”๋ฒจ๋กญ ๋ธ”๋ก์„ ์ œ์•ˆํ•œ๋‹ค. ๊ฐ ๋ธ”๋ก์€ ์ฃผํŒŒ์ˆ˜ ํ•„ํ„ฐ์™€ ์—”๋ฒจ๋กญ ์ถ”์ถœ ๊ธฐ๋Šฅ์„ ๋„คํŠธ์›Œํฌ ๋‚ด์—์„œ ์Šค์Šค๋กœ ํ•™์Šตํ•˜์—ฌ ์‹ ๊ฒฝ๋ง์ด ์ œํ•œ๋œ ํ•™์Šต ์ง„๋™๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ๋ณด๋‹ค ๊ฐ•๊ฑดํ•˜๊ณ  ์ผ๋ฐ˜ํ™” ๋œ ํŠน์ง•์„ ํ•™์Šตํ•˜๋„๋ก ํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ์ง„๋™ ์‹ ํ˜ธ์˜ ์ง„๋‹จ ๋ฐ์ดํ„ฐ์— ํŠนํ™”๋œ ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ ์ฆ๋Ÿ‰๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋’ค์ง‘๊ธฐ, ํšŒ์ „ ๋˜๋Š” ์ „๋‹จ๊ณผ ๊ฐ™์€ ๋ฐ์ดํ„ฐ ํ™•๋Œ€๋ฅผ ์œ„ํ•œ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ๋ฅผ ์œ„ํ•œ ๊ธฐ์กด์˜ ๊ธฐ์ˆ ์ด 1 ์ฐจ์› ์ง„๋™ ๋ฐ์ดํ„ฐ์— ์ ํ•ฉํ•˜์ง€ ์•Š์œผ๋ฉฐ, ์ง„๋™ ์‹ ํ˜ธ์˜ ๋ฌผ๋ฆฌ์  ํŠน์„ฑ์— ๋งž์ง€ ์•Š๋Š” ์‹ ํ˜ธ๋ฅผ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ฌผ๋ฆฌ์  ํŠน์„ฑ์„ ์žƒ์ง€ ์•Š๊ณ  ์ง„๋™ ๋ฐ์ดํ„ฐ๋ฅผ ์ฆ๋Ÿ‰ํ•˜๊ธฐ ์œ„ํ•ด ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์€ cepstrum์˜ ์ฃผ์š”์„ฑ๋ถ„์„ ์ถ”์ถœํ•˜๊ณ  ์กฐ์ •ํ•˜์—ฌ ์—ญ cepstrum์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ์ƒˆ๋กœ์šด ์ƒ˜ํ”Œ์„ ์ƒ์„ฑํ•œ๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•˜์—ฌ ์ฆ๋Ÿ‰๋ค ๋ฐ์ดํ„ฐ์„ธํŠธ๋Š” ์ง„๋‹จ ๋ชจ๋ธ ํ•™์Šต์— ๋Œ€ํ•ด ์„ฑ๋Šฅํ–ฅ์ƒ์„ ๊ฐ€์ ธ์˜จ๋‹ค. ์„ธ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ์ „์ด ํ•™์Šต์— ์‚ฌ์šฉ๋˜๋Š” ํŒŒ๋ผ๋ฏธํ„ฐ ์ „์ด๋ฅผ ์œ„ํ•œ ์ƒˆ๋กœ์šด ํŒŒ๋ผ๋ฏธํ„ฐ ์žฌํ•™์Šต๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ๋œ ์„ ํƒ์  ํŒŒ๋ผ๋ฏธํ„ฐ ๋™๊ฒฐ๋ฒ•์€ ์†Œ์Šค ๋„คํŠธ์›Œํฌ์—์„œ ์ „์ด๋œ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์„ ํƒ์ ์œผ๋กœ ๋™๊ฒฐํ•˜๊ณ  ๋Œ€์ƒ ๋„๋ฉ”์ธ์— ๋Œ€ํ•ด ๋ถˆํ•„์š”ํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ๋งŒ ์žฌํ•™์Šตํ•˜์—ฌ ๋Œ€์ƒ ๋ฐ์ดํ„ฐ๊ฐ€ ์ง„๋‹จ ๋ชจ๋ธ์— ์žฌํ•™์Šต๋  ๋•Œ์˜ ๊ณผ์ ํ•ฉ์„ ์ค„์ด๊ณ  ์†Œ์Šค ๋„คํŠธ์›Œํฌ์˜ ์„ฑ๋Šฅ์„ ๋ณด์กดํ•œ๋‹ค. ์ œ์•ˆ๋œ ์„ธ ๋ฐฉ๋ฒ•์€ ๋…๋ฆฝ์ ์œผ๋กœ ๋˜๋Š” ๋™์‹œ์— ์ง„๋‹จ๋ชจ๋ธ์— ์‚ฌ์šฉ๋˜์–ด ๋ถ€์กฑํ•œ ๊ณ ์žฅ๋ฐ์ดํ„ฐ๋กœ ์ธํ•œ ์ง„๋‹จ์„ฑ๋Šฅ์˜ ๊ฐ์†Œ๋ฅผ ๊ฒฝ๊ฐํ•˜๊ฑฐ๋‚˜ ๋” ๋†’์€ ์„ฑ๋Šฅ์„ ์ด๋Œ์–ด๋‚ผ ์ˆ˜ ์žˆ๋‹ค.Chapter 1 Introduction 13 1.1 Motivation 13 1.2 Research Scope and Overview 15 1.3 Structure of the Thesis 19 Chapter 2 Literature Review 20 2.1 Deep Neural Networks 20 2.2 Transfer Learning and Parameter Transfer 23 Chapter 3 Description of Testbed Data 26 3.1 Bearing Data I: Case Western Reserve University Data 26 3.2 Bearing Data II: Accelerated Life Test Test-bed 27 Chapter 4 Filter-Envelope Blocks in Neural Network for Robust Feature Learning 32 4.1 Preliminary Study of Problems In Use of CNN for Vibration Signals 34 4.1.1 Class Confusion Problem of CNN Model to Different Conditions 34 4.1.2 Benefits of Frequency Filtering and Envelope Extraction for Fault Diagnosis in Vibration Signals 37 4.2 Proposed Network Block 1: Filter Block 41 4.2.1 Spectral Feature Learning in Neural Network 42 4.2.2 FIR Band-pass Filter in Neural Network 45 4.2.3 Result and Discussion 48 4.3 Proposed Neural Block 2: Envelope Block 48 4.3.1 Max-Average Pooling Block for Envelope Extraction 51 4.3.2 Adaptive Average Pooling for Learnable Envelope Extractor 52 4.3.3 Result and Discussion 54 4.4 Filter-Envelope Network for Fault Diagnosis 56 4.4.1 Combinations of Filter-Envelope Blocks for the use of Rolling Element Bearing Fault Diagnosis 56 4.4.2 Summary and Discussion 58 Chapter 5 Cepstrum Editing Based Data Augmentation for Vibration Signals 59 5.1 Brief Review of Data Augmentation for Deep Learning 59 5.1.1 Image Augmentation to Enlarge Training Dataset 59 5.1.2 Data Augmentation for Vibration Signal 61 5.2 Cepstrum Editing based Data Augmentation 62 5.2.1 Cepstrum Editing as a Signal Preprocessing 62 5.2.2 Cepstrum Editing based Data Augmentation 64 5.3 Results and Discussion 65 5.3.1 Performance validation to rolling element bearing diagnosis 65 Chapter 6 Selective Parameter Freezing for Parameter Transfer with Small Dataset 71 6.1 Overall Procedure of Selective Parameter Freezing 72 6.2 Determination Sensitivity of Source Network Parameters 75 6.3 Case Study 1: Transfer to Different Fault Size 76 6.3.1 Performance by hyperparameter ฮฑ 77 6.3.2 Effect of the number of training samples and network size 79 6.4 Case Study 2: Transfer from Artificial to Natural Fault 81 6.4.1 Diagnostic performance for proposed method 82 6.4.2 Visualization of frozen parameters by hyperparameter ฮฑ 83 6.4.3 Visual inspection of feature space 85 6.5 Conclusion 87 Chapter 7 91 7.1 Contributions and Significance 91Docto

    Bearing fault diagnosis method based on Hilbert envelope spectrum and deep belief network

    Get PDF
    When fault occurs in bearing, the frequency spectrum of vibration signal would change and it contains a considerable amount of fault information which can reflect the actual work condition and the fault type of bearing. Recently, the statistical features of the frequency spectrum have been widely used in bearing fault diagnosis. However, there are lots of statistical features with different sensitivity to fault identification. Selecting the most sensible statistical features for improving classification accuracy is often determined with experience, which will make great subjective influence on the fault diagnosis results. Deep belief network (DBN) is a deep neural network which can automatically find a latent hierarchical feature representation from the high dimension input data. In this study, a bearing fault diagnosis method based on Hilbert envelope spectrum and DBN is proposed. Firstly, the vibration signals under different test conditions are resampled. Secondly, the whole Hilbert envelope spectrum of the resampled signal is used directly as eigenvector to characterize the fault type of bearing. Finally, a DBN classifier model is established to recognize the fault type of bearing. DBN classifier model can be used as both an automatic feature extractor and a classifier for bearing fault diagnosis. Therefore, the process of fault diagnosis can be greatly simplified. The results of two different experiments demonstrate that the proposed method outperforms the competing methods and it can obtain a more excellent diagnostic performance
    • โ€ฆ
    corecore