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Unexpected failures of mechanical systems can lead to substantial social and 

financial losses in many industries. In order to detect and prevent sudden failures and 

to enhance the reliability of mechanical systems, significant research efforts have been 

made to develop data-driven fault diagnosis techniques. The purpose of fault diagnosis 

techniques is to detect and identify the occurrence of abnormal behaviors in the target 

mechanical systems as early as possible. Recently, deep learning (DL) based fault 

diagnosis approaches, including the convolutional neural network (CNN) method, have 

shown remarkable fault diagnosis performance, thanks to their autonomous feature 

learning ability.  

Still, there are several issues that remain to be solved in the development of robust 
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and industry-applicable deep learning-based fault diagnosis techniques. First, by 

stacking the neural network architectures deeper, enriched hierarchical features can be 

learned, and therefore, improved performance can be achieved. However, due to 

inefficiency in the gradient information flow and overfitting problems, deeper models 

cannot be trained comprehensively. Next, to develop a fault diagnosis model with high 

performance, it is necessary to obtain sufficient labeled data. However, for mechanical 

systems that operate in real-world environments, it is not easy to obtain sufficient data 

and label information. Consequently, novel methods that address these issues should 

be developed to improve the performance of deep learning based fault diagnosis 

techniques. 

This dissertation research investigated three research thrusts aimed toward 

maximizing the use of information to improve the performance of deep learning based 

fault diagnosis techniques, specifically: 1) study of the deep learning structure to 

enhance the gradient information flow within the architecture, 2) study of a robust and 

discriminative feature learning method under insufficient and noisy data conditions 

based on parameter transfer and triplet loss, and 3) investigation of a domain adaptation 

based fault diagnosis method that propagates the label information across different 

domains. 

The first research thrust suggests an advanced CNN-based architecture to improve 

the gradient information flow within the deep learning model. By directly connecting 

the feature maps of different layers, the diagnosis model can be trained efficiently 

thanks to enhanced information flow. In addition, the dimension reduction module also 

can increase the training efficiency by significantly reducing the number of trainable 

parameters.  
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The second research thrust suggests a parameter transfer and metric learning based 

fault diagnosis method. The proposed approach facilitates robust and discriminative 

feature learning to enhance fault diagnosis performance under insufficient and noisy 

data conditions. The pre-trained model trained using abundant source domain data is 

transferred and used to develop a robust fault diagnosis method. Moreover, a semi-hard 

triplet loss function is adopted to learn the features with high separability, according to 

the class labels.  

Finally, the last research thrust proposes a label information propagation strategy 

to increase the fault diagnosis performance in the unlabeled target domain. The label 

information obtained from the source domain is transferred and utilized for developing 

fault diagnosis methods in the target domain. Simultaneously, the newly devised 

semantic clustering loss is applied at multiple feature levels to learn discriminative, 

domain-invariant features. As a result, features that are not only semantically well-

clustered but also domain-invariant can be effectively learned. 
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Chapter 1  Introduction 

 

Introduction 

 

1.1 Motivation 

Many types of mechanical components and systems are used in various 

industrial fields, such as the power generation, manufacturing, and transportation 

industries. Unexpected failures of mechanical systems can lead to substantial social 

and financial losses in many industries. In order to detect and prevent sudden failures 

and to enhance the reliability of mechanical systems, significant research efforts 

have been made to develop robust fault diagnosis techniques. The purpose of fault 

diagnosis techniques is to detect and identify the occurrence of abnormal behaviors 

of target mechanical systems as early as possible. As recent technological advances 

have made it possible to obtain a large amount of data from mechanical systems, 

data-driven fault diagnosis techniques have been attracting the interest of many 

researchers. However, conventional data-driven fault diagnosis methods have a big 

disadvantage, specifically, domain knowledge dependency problems. These 

drawbacks make it very difficult and inefficient to develop fault diagnosis methods 

using conventional approaches. 

In order to overcome the aforementioned problems of conventional fault 
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diagnosis techniques, deep learning (DL) based fault diagnosis methods have 

recently drawn the interest of many researchers. Deep learning is a special type of 

machine learning technique that can autonomously learn optimal features from data. 

By stacking several neural network layers and training them by back-propagation 

methods, the proper feature representations for given tasks can be obtained. As a 

result, by using DL based diagnosis methods, expertise and domain knowledge 

dependency issues can be mitigated. Therefore, the time and cost required to 

establish fault diagnosis techniques can be reduced. 

However, several issues remain to be solved to develop deep learning based 

fault diagnosis techniques for real-world applications. First, in the case of deep 

learning based approaches, the depth of representations is of central importance for 

many tasks. By making the neural network models deeper, enriched hierarchical 

features can be obtained through high-level abstractions of input data, and better 

performance can be achieved. Nevertheless, it becomes more difficult to 

comprehensively train deep learning models as the models become deeper. This is 

caused by the inefficient flow of gradient information and the overfitting problem 

due to a large number of learning parameters.  

Next, there are data-related issues. In order to develop high-performance fault 

diagnosis methods using data-driven strategies, including deep learning, sufficient 

labeled data is required. Otherwise, it is impossible to obtain accurate and robust 

diagnosis methods. However, for mechanical systems that are operating in the real 

world, it is not easy to obtain sufficient datasets. In this case, it is difficult to learn 

an optimal diagnosis model, and the model may overfit to the insufficient data. Also, 

it is difficult to get label information for all systems and health states of interest. 
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Therefore, it is hard to train robust fault diagnosis models with high generalization 

performance through the use of conventional supervised learning schemes. 

Consequently, the three issues outlined above should be properly addressed to 

improve the performance of deep learning based fault diagnosis techniques. 

 

1.2 Research Scope and Overview 

The goal of this doctoral dissertation research is to develop methods that 

maximize the use of information in order to improve the performance of deep 

learning based fault diagnosis techniques. Three research thrusts were pursued 

toward this aim. First, a direct connection based convolutional neural network that 

enhances the gradient information flow was developed. Next, a robust and 

discriminative feature learning method for fault diagnosis was studied by 

transferring the pre-trained model and making the features better separated by their 

classes. Finally, a domain adaptation method based on the semantic clustering loss 

was proposed, to allow learning of more discriminative domain-invariant features. 

The three thrusts are briefly described below. 

 

Research Thrust 1:  Direct Connection Based Convolutional Neural Network 

(DC-CNN) for Fault Diagnosis 

Research Thrust 1 proposes a direct connection based convolutional neural 

network (DC-CNN) to significantly improve the training efficiency and diagnosis 

performance of deep learning based techniques developed for fault diagnosis of 
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mechanical systems. By directly connecting the feature maps of different layers 

within the CNN architecture, we can maximize the gradient information flow and, 

therefore, train the deep neural networks efficiently. Simultaneously, to deal with the 

problems that can be caused by the increased number of parameters that arise due to 

the direct connections, dimension reductions not only in width and height but also in 

the depth-wise direction are conducted. The performance of the proposed DC-CNN-

based fault diagnosis method was validated using experimental data from a rotor 

testbed. Comparison studies with other machine learning and deep learning based 

methods support that the proposed method can substantially improve the diagnosis 

performance in terms of accuracy and efficiency. In addition, the effectiveness of the 

proposed method was verified by conducting ablation studies and visualization 

analyses. The proposed method showed more stable and robust diagnosis 

performance under conditions of insufficient or noisy data, as compared with other 

existing methods. 

 

Research Thrust 2:  Robust and Discriminative Feature Learning for Fault 

Diagnosis Under Insufficient and Noisy Data Conditions 

Research Thrust 2 proposes a robust and discriminative feature learning method 

to enhance fault diagnosis performance under insufficient and noisy data conditions. 

First, by transferring and adopting the pre-trained neural network model learned 

from the source domain with abundant data, reliable and robust feature learning for 

the target domain is possible. Then, discriminative features can be obtained based on 

the metric learning concept. In this research, a CNN model trained with a sufficient 
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image dataset is employed as the pre-trained model and semi-hard triplet loss is used 

to learn semantically well-separated features. The superior performance of the 

proposed method was verified using experimental data obtained from a rotor testbed. 

Based on comparisons with other deep learning based fault diagnosis methods, 

outstanding diagnosis performance of the proposed method, under both insufficient 

data conditions and noisy data conditions, was confirmed. Further, the visualization 

results of the learned features demonstrate the robust and discriminative 

characteristics of the features learned by the proposed method. These results show 

that the proposed approach can enhance fault diagnosis performance by transferring 

the model parameters learned from the source domain with abundant data and taking 

into account the class-wise distances between samples. 

 

Research Thrust 3:  A Domain Adaptation with Semantic Clustering (DASC) 

Method for Fault Diagnosis 

Research Thrust 3 proposes a novel domain adaptation based fault diagnosis 

technique to improve diagnosis performance for the unlabeled target domain by 

using the label information obtained from the source domain. The DASC method 

aims to learn discriminative and domain-invariant features that both minimize 

domain discrepancy between the source and target domains and also make the 

samples from each class semantically well-clustered. This is achieved by proposing 

the semantic clustering loss, which brings samples that have the same class label 

closer and causes differently labeled samples to separate. Furthermore, by applying 

this loss at multiple feature levels, more robust features with desired properties are 
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obtained. The effectiveness of the DASC approach was validated via various 

analyses that examined experimental data from three bearing systems. The results 

indicate that the DASC approach significantly increases generalized diagnosis 

performance for mechanical systems, as compared with existing approaches. Further, 

the results of visualization of the learned feature distributions show that the DASC 

method can obtain discriminative features with better clustering characteristics. The 

proposed method’s efficacy was also confirmed to a further degree through ablation 

studies. In addition, by defining an index that evaluates how well the target features 

are clustered semantically, DASC’s ability to make target domain features well-

clustered class-wise was verified. These results confirm that the proposed DASC 

approach is able to greatly increase the fault diagnosis performance for target domain 

systems via transferring and using the label information obtained from the source 

domain.  

 

1.3 Dissertation Layout 

This doctoral dissertation is organized as follows. Chapter 2 provides a 

technical background and literature review of fault diagnosis techniques, transfer 

learning, and metric learning concepts. Chapter 3 suggests a direct connection based 

convolutional neural network (DC-CNN) for fault diagnosis. In Chapter 4, robust 

and discriminative feature learning for fault diagnosis under insufficient and noisy 

data conditions, based on the parameter transfer and metric learning, is described. 

Then, Chapter 5 introduces a domain adaptation with semantic clustering (DASC) 

method for fault diagnosis. Finally, Chapter 6 concludes the doctoral dissertation by 
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summarizing the contributions of this work and suggesting future research. 
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Chapter 2  

 

Technical Background  

and Literature Review 

 

In this doctoral research, fault diagnosis techniques using deep learning 

methods were studied. In particular, various studies were conducted to improve the 

performance and efficiency of deep learning based fault diagnosis techniques. Before 

explaining the details of the research, this chapter provides the technical background 

and literature review necessary to understand the research described in this 

dissertation. Specifically, in Chapter 2.1, the concept of fault diagnosis techniques 

for mechanical systems is described. In Chapter 2.2, the concept and types of transfer 

learning are explained. Then, an overview of the metric learning concept is provided 

in Chapter 2.3. Finally, a summary and discussion are outlined in Chapter 2.4. 

 

2.1 Fault Diagnosis Techniques for Mechanical Systems 

Many types of mechanical components and systems are used in various 

industrial fields, including the power generation, manufacturing, and transportation 

industries. As mechanical systems are employed in more and more areas, the number 

of failures can increase. In addition, as these kinds of mechanical systems are used 

over long periods of time, the systems deteriorate and, therefore, the probability of 
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failure may increase. Unexpected failures of mechanical systems can happen for 

countless reasons and can lead to significant social and economic losses. In order to 

prevent unanticipated failures and to improve the reliability of mechanical systems, 

significant research efforts have been made to develop prognostics and health 

management (PHM) techniques. PHM is a framework that provides comprehensive 

maintenance and health risk management strategies that facilitate industrial asset 

management by enhancing the quality, safety, availability, and productivity of 

mechanical components and systems. An overview of PHM is presented in Figure 

2-1. PHM is composed of fault diagnosis, prognostics, and health management. By 

focusing on improving these elements of PHM, this doctoral dissertation aims to 

develop fault diagnosis techniques that identify the health states of mechanical 

systems correctly and efficiently. This section is devoted to providing a review of 

fault diagnosis techniques, from conventional to recent approaches.  

 

 

Figure 2-1 Prognostics and health management (PHM). 
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2.1.1 Fault Diagnosis Techniques 

Mechanical systems can be vulnerable in the presence of uncertainties and 

health degradation; these factors can cause unexpected failures with huge associated 

economic losses. In order to prevent failures, fault diagnosis techniques for 

mechanical systems are becoming increasingly important. The goal of fault diagnosis 

techniques is to detect and recognize deterioration in the health states of the target 

mechanical systems. In general, fault diagnosis techniques can be categorized into 

three groups of methods; model-based, data-driven, and hybrid [1], [2]. In model-

based schemes, fault diagnosis is performed based on physical or mathematical 

models that can appropriately represent the health states of the mechanical system of 

interest [3], [4]. In contrast, data-driven schemes rely on sensor signals measured 

from the target mechanical systems. Hybrid methods use both schemes 

simultaneously to leverage the advantages of each method [5]. Since it is almost 

impossible to develop accurate analytical models for complex mechanical systems, 

data-driven methods have recently drawn attention from many researchers. In 

addition, in the era of the fourth industrial revolution, the importance of data-driven 

diagnosis schemes is growing rapidly due to developments in data-related 

technologies, such as sensor technology, big-data computing technology, and 

algorithms to deal with large amounts of sensor data.  

As shown in Figure 2-2, conventional data-driven fault diagnosis methods 

include a rule-based method and a health feature based method. First, the rule-based 

method is an approach that diagnoses the health states of mechanical systems based 

on human-created or curated rule sets. For this method, it is essential to devise proper 

rules that well-distinguish the health states of the target systems. Second, as shown 
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in Figure 2-3, the health feature based fault diagnosis method consists of four basic 

steps: (1) data acquisition, (2) data preprocessing, (3) feature engineering, and (4) 

health classification [6]. For fault diagnosis of mechanical systems, vibration signals 

are dominantly used because they contain a great deal of information about 

mechanical systems’ physical behaviors [7]–[9]. To extract critical information that 

can well represent the health states of target systems, from raw input data, data 

preprocessing and feature engineering steps are carried out. Lastly, based on the 

extracted features, diagnosis models are developed using several statistical learning 

methods, as can be seen in Figure 2-4. Then, through these developed models, fault 

diagnosis can be conducted for datasets obtained from the target mechanical systems. 

 

 

 

 

 

 

 

 
(a) 

 
(b) 

Figure 2-2 Conventional fault diagnosis methods: (a) rule-based 

method; (b) health feature based method. 
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Figure 2-3 General procedure of the conventional health feature based fault diagnosis method. 
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(a) (b) 

 

 

(c) (d) 

Figure 2-4 Examples of statistical learning methods for fault diagnosis: (a) Support vector machine (SVM); (b) 

Logistic regression (LR); (c) Random forest (RF); and (d) K-nearest neighbors (KNN). 
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For conventional data-driven diagnosis techniques, however, there are several 

problems that make it difficult to develop accurate diagnosis models and that hinder 

the improvement of diagnosis performance. The biggest problem in conventional 

fault diagnosis techniques is that a lot of domain knowledge and expertise are 

required. In the case of rule-based methods, a great deal of physical and mechanical 

knowledge is necessary to design optimal rule sets capable of distinguishing all states 

of interest. For health feature based diagnosis methods, a large amount of domain 

knowledge is required, especially in the signal processing and feature engineering 

steps. In these steps, experts’ knowledge and experiences play a very important role 

to devise suitable features that can properly indicate the current health state of the 

mechanical system [10], [11]. Among various candidates, proper techniques should 

be selected based on physical knowledge related to target systems and obtained 

signals. Unless the proper features are designed and extracted, the performance of 

the fault diagnosis method cannot be guaranteed. Further, even if appropriate 

features are designed for a specific target system or health state, those features may 

not be suitable for different tasks. This means that for different target systems and 

states, different feature engineering approaches must be designed [12]. Consequently, 

it is time-consuming and expensive to develop conventional rule-based or health 

feature based fault diagnosis methods. In addition, conventional fault diagnosis 

methods have a disadvantage in that it is difficult for these techniques to be 

universally employed for various target systems. These drawbacks make it very hard 

and inefficient to develop fault diagnosis methods in conventional ways.
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2.1.2 Deep Learning Based Fault Diagnosis Techniques 

Recently, to overcome the aforementioned problems of conventional fault 

diagnosis techniques, deep learning (DL) based fault diagnosis methods have drawn 

the attention of many researchers [13], [14]. Deep learning is a special type of 

machine learning method that consists of multiple layers of neural networks, as 

shown in Figure 2-5; these networks are mathematical models inspired by the 

connectivity patterns of biological neural networks. The classification results from 

the DL-based classification model can be expressed as follows: 

𝑃(𝑦 = 𝑐|𝑥, 𝑤, 𝑏)

= 𝑓𝑙(𝑓𝑙−1(⋯𝑓2(𝑓1(𝑥; 𝑤1, 𝑏1);𝑤2 , 𝑏2)⋯ ;𝑤𝑙−1, 𝑏𝑙−1)⋯ ;𝑤𝑙 , 𝑏𝑙) 
(2.1) 

where 𝑥 denotes input data; 𝑤𝑙 and 𝑏𝑙 denote weight and bias at the 𝑙𝑡ℎ layer to 

be trained; 𝑦  denotes output value; 𝑐  denotes class; 𝑓𝑙  denotes nonlinear 

functions at the 𝑙𝑡ℎ layer; and 𝑃(𝑦 = 𝑐|𝑥, 𝑤, 𝑏) denotes the probability that input 

data 𝑥 belongs to class 𝑐, based on the model with trainable parameters w and b. 

DL models are trained to learn optimal weight and bias values to discover the proper 

features that work well on target tasks. Through the use of back-propagation methods, 

the error gradient with respect to each parameter is obtained, which implies the 

influence of each parameter on the final loss. Then, using a mini-batch gradient 

descent algorithm, parameters can be optimized in order to minimize the target loss 

function. The mini-batch gradient descent algorithm can be expressed as follows: 

θt+1 ← 𝜃𝑡 − 𝜖𝑡|𝐵𝑡|
−1 ∑ ∇𝜃𝐿(𝑥𝑖; 𝜃𝑡)

𝑖∈𝐵𝑡

 (2.2) 

where 𝑥𝑖 denotes the ith input data; 𝜃𝑡  denotes the parameters, including weights 

and biases at step 𝑡 ; 𝐵𝑡  denotes the mini-batch with cardinality |𝐵𝑡| ; ∇𝜃𝐿 
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denotes the gradient of cost function 𝐿  with respect to 𝜃 ; and 𝜖𝑡  denotes the 

learning rate at step 𝑡 . Based on the back-propagation and gradient descent 

algorithms, DL can automatically learn optimal features for given tasks from the 

input dataset. Thanks to this autonomous feature learning capability, several 

advantages can be gained by adopting DL-based fault diagnosis methods, as 

presented in Figure 2-6. First, domain knowledge dependency problems existing in 

conventional diagnosis methods can be alleviated by using DL. As a result, the time 

and cost required to develop the fault diagnosis technique can be reduced. In addition, 

DL also enables realization of an end-to-end learning strategy to learn the feature 

extractor part and classifier part at the same time. 

 

 

Figure 2-5 Schematic diagram of a deep neural network. 
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Figure 2-6 Advantages of deep learning based fault diagnosis techniques. 
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Among many DL techniques, the convolutional neural network (CNN) 

approach has been widely used in many fields, thanks to its advantages, which 

include local connectivity, parameter sharing, and the ability to consider high-

dimensional information within the input data [15]–[17]. Figure 2-7 shows the 

structure of the CNN method. A CNN consists of combinations of multiple layers, 

including convolutional layers and pooling layers. In contrast to conventional fully 

connected neural networks, a CNN uses weight matrices with dimensions smaller 

than those of input data, which are called kernels or filters. Therefore, a CNN has a 

local connectivity characteristic that allows it to learn local patterns within small 

regions of input data [15]. Furthermore, a CNN uses multiple dimensional kernels to 

extract features, and therefore, it can consider high-dimensional information within 

the input data. In the convolutional layers, by sliding kernels within the input data 

and conducting convolution operations, output layers called feature maps, whose 

depth is the same as the number of kernels, are produced. Based on those convolution 

operations, features are extracted from the input data. In addition, a CNN uses 

kernels with the same weight values for these convolution operations within the 

entire input data; this is referred to as parameter sharing [16]. As a result, a CNN has 

the ability to significantly reduce the number of parameters to be trained and increase 

computational efficiency. Depending on the dimension of the input data, several 

types of convolutional layers can be used. In general, one-dimensional CNN (1D-

CNN) using 1D kernels and two-dimensional CNN (2D-CNN) using 2D kernels are 

used. The pooling layers pool out specific values, (i.e., maximum or average values) 

from the sub-regions; thus, feature maps from previous layers are downsized. 

Moreover, like other conventional neural networks, nonlinear activation functions – 

for example, rectified linear unit (ReLU) – are used in order to learn nonlinear 
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features. Lastly, a fully connected layer acting as a classifier follows. By stacking 

several combinations of those components, various CNN architectures can be 

achieved [18]–[21]. Due to its advantages explained above, the CNN approach has 

been extensively used in various research areas, including face recognition, disease 

diagnosis, and natural language processing [22]–[24]. 

Recently, due to the merits of the CNN approach, CNNs have also been actively 

used in the field of machine fault detection and diagnosis. In order to deal with one-

dimensional raw sensor signals, such as time-series vibration signals, 1D-CNN has 

been employed. Wu et al. [34] used 1D-CNN for the diagnosis of gearbox systems 

and achieved better diagnosis accuracy, as compared to other methods that are based 

on traditional signal demodulation methods. Jiang et al. [35] proposed a 1D-CNN-

based fault diagnosis method for a wind turbine gearbox that can consider the 

multiscale characteristics inherent in vibration signals. Kim et al. [17] proposed a 

1D-CNN-based parameter repurposing method for fault diagnosis of rolling element 

bearings with small datasets. 

2D-CNN can be used to consider multiple dimensional information and 

correlations within 2D input data. Wen et al. [25] proposed a CNN-based, data-

driven fault diagnosis method for bearing and pump systems. By using the CNN 

approach, along with the signal-to-image conversion method, these researchers 

achieved significant improvements in diagnosis performance. Liu et al. [26] used a 

2D-CNN-based model for fault diagnosis of motor bearings and centrifugal pumps; 

the approach extracts fault features from images constructed by continuous wavelet 

transform. Maraaba et al. [27] developed a fault diagnosis method for permanent 

magnet synchronous motors based on 2D-CNN. In the Maraaba et al. work, 2D 
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matrices, which are composed of three-phase, steady-state motor currents, are 

adopted as the input data. The results show that high diagnosis accuracy can be 

obtained without the need for a manual feature extraction phase. In addition to the 

aforementioned papers, many studies have been conducted to develop fault diagnosis 

techniques using CNN [28]–[30]. 
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Figure 2-7 Schematic diagram of a convolutional neural network. 
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2.2 Transfer Learning 

In order to develop robust fault diagnosis methods using data-driven strategies, 

including deep learning, sufficient labeled datasets must be obtained from the target 

system for every health condition of interest [31], [32]. Depending on the quantity 

and quality of data used when learning the diagnosis models, there may be a large 

difference in the generalization performance of the developed diagnosis models. In 

addition, for health states with extremely little data, it may be impossible to learn an 

accurate diagnosis model that can correctly diagnose those health states. Further, it 

is useful to point out that data-driven methods offer satisfactory performance when 

both the training and test data can be assumed to share a distribution of the same type 

[33], [34]. However, for complex mechanical systems that are operating in the real 

world, it is challenging to secure sufficient labeled datasets. Moreover, in many cases, 

the training and test data exhibit different types of distribution for a variety of reasons, 

including environmental influences or changing operating conditions. As a result, in 

the real world, it is hard to train robust fault diagnosis models with high 

generalization performance through the use of conventional supervised learning 

schemes. 

On the other hand, transfer learning is a learning strategy that can be used when 

there is insufficient data or when the distributions of the training data and test data 

are different. Transfer learning is a technique that utilizes the knowledge and 

information obtained from one domain or task to solve problems in other domains 

or tasks [35]. In other words, it refers to a learning strategy that uses knowledge 

obtained from the source domain (𝐷𝑆) to construct a diagnosis model 𝑃(𝑌𝑇|𝑋𝑇) that 

determines the health state of the mechanical system in the target domain (𝐷𝑇). As 
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shown in Figure 2-8, through the transfer learning scheme, knowledge learned from 

the source domain, where it is relatively easy to obtain sufficient data, can be used 

to construct a fault diagnosis model in the target domain, where it is difficult to obtain 

data. As a result, it is possible to efficiently learn a robust fault diagnosis model by 

overcoming the problems that we encounter when using conventional supervised 

learning strategies under insufficient data conditions. As can be seen in Figure 2-9, 

the benefits of using transfer learning are as follows. First, because the information 

or knowledge learned from the source domain is used, learning starts with an already 

improved performance. Next, learning can proceed faster, and ultimately, better 

target performance can be obtained. In summary, by using a transfer learning 

strategy, we can save the time required to develop the diagnosis techniques, and we 

can get better diagnosis models with improved performance. 

 

Figure 2-8 Learning process of transfer learning. 

 



24 

 

 

Figure 2-9 Three possible benefits obtained by using transfer learning during the 

learning process. 

There are various learning settings, based on the relationship or similarity 

between the domains and tasks in a given problem situation, as shown in Table 2-1 

[35]. First, for conventional machine learning problem settings, which are the types 

of settings we generally encountered, the source and target have the same domains 

and tasks. On the other hand, inductive transfer learning means a setting where the 

source task and the target task are different; Transductive transfer learning means a 

problem setting with the same source and target tasks, however, different source and 

target domains. Lastly, a setting where both domains and tasks are different is called 

unsupervised transfer learning.  
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Table 2-1 Various types of learning settings. 

Learning setting Source and target domains (𝑫𝑺 & 𝑫𝑻) Source and target tasks (𝑻𝑺 & 𝑻𝑻) 

Traditional machine learning Same Same 

Inductive transfer learning Same Different, but related 

Transductive transfer learning Different, but related Same 

Unsupervised transfer learning Different, but related Different, but related 
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Transfer learning can be classified into several categories of approaches, in 

accordance with which part of the knowledge or information is transferred across 

domains or tasks, as shown in Figure 2-10. The instance transfer learning approach 

refers to a method of reusing some part of the source domain data in the target 

domain. Next, the parameter transfer approach is a method of transferring 

information by discovering and transferring parameters that can be shared in two 

domains. Finally, the feature representation transfer approach is a learning strategy 

in which information can be transferred by learning and sharing common feature 

representations that can be shared in two domains. 

 

 



27 

 

 

 

 
(a) 

 
(b) 

 
(c) 

Figure 2-10 Different transfer learning approaches: (a) instance transfer; (b) 

parameter transfer; and (c) feature representation transfer. 
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2.3 Metric Learning 

Metric learning is a type of learning strategy that learns more useful 

representations based on comparisons of the distance or similarity between samples 

[36]. First, the proper distance metric should be specified, as shown in Figure 2-11 

(a). Then, based on this distance metric, superior representations can be learned by 

mapping similar samples closer to each other and mapping dissimilar samples to stay 

apart from each other, as shown in Figure 2-11 (b). For a supervised learning 

approach whose label information is available, this can be achieved by reducing the 

distance between samples with the same class label and increasing the distance 

between samples from different class labels. 

These metric learning methods have been widely used in many research areas, 

such as image retrieval [37] and face identification and verification [38], [39]. For 

the purpose of calculating the similarity distance between samples, various types of 

network structures and loss terms have been developed. In many previous works, 

Siamese-network-based and triplet-network-based structures have been widely used 

to calculate the similarity metrics [38], [40]. Many studies have been conducted and 

various types of loss functions have been proposed to calculate similarity distances 

between samples. Sun et al. [39] used a contrastive loss and Wen et al. [22] used a 

center loss to obtain feature representations with large inter-class differences and 

small intra-class variations to solve face recognition tasks. In addition, various types 

of loss functions, including triplet loss and quadruple loss, have been proposed and 

used to learn better features for many tasks [40], [41]. Recently, studies based on 

metric learning have been actively conducted for many other tasks, including fault 

diagnosis [42]–[45]. Since metric learning can provide better feature representations 
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that are more discriminative and well-separated as depicted in Figure 2-12, more 

accurate and reliable fault diagnosis models with high generalization performance 

can be achieved. 

 

 

(a) 

 

(b) 

Figure 2-11 Schematic diagram of metric learning: (a) similarity distance metric; 

(b) learning strategy of metric learning. 
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Figure 2-12 More discriminative and well-separated feature distributions obtained 

by adopting metric learning. 

 

2.4 Summary and Discussion 

The goal of this doctoral dissertation is to propose new methods for learning 

robust and high-performance diagnosis models, by addressing some difficulties that 

exist in the development of deep learning based fault diagnosis techniques. To this 

end, as described in Section 1.2, new methods are proposed to train deep learning 

models well, by maximizing the use of additional information. By developing 

improved methods to maximize the use of information for deep learning based fault 

diagnosis techniques, it is possible to obtain superior diagnosis models that can be 

used in the real industrial fields. 
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Chapter 3  

 

Direct Connection Based 

Convolutional Neural Network 

(DC-CNN) for Fault Diagnosis 

 

By stacking the neural network architectures deeper, DL can learn enriched 

hierarchical features through high-level abstractions of input data [15], [46]. Those 

abundant features are of central importance to solve given target tasks. Due to this 

capability, DL has yielded state-of-the-art performance in many areas [18], [47], [48]. 

Although the depth of the architecture is a significant factor, the number of layers 

cannot be increased indefinitely. The main reason is that, for deep architectures, it is 

extremely difficult to train whole models comprehensively due to the problems in 

gradient information flow that arise while training using back-propagation 

algorithms [49], [50]. In addition, deeper networks can easily experience overfitting 

problems due to a large number of trainable parameters. 

In this chapter, to deal with this problem, we propose the direct connection 

based convolutional neural network (DC-CNN) for fault diagnosis of mechanical 

systems. It aims to improve the information flow within deep network architectures 

by directly connecting the feature maps of different layers within CNN. As a result, 

we can train the deep CNN architectures efficiently and learn enriched features for 

high diagnosis performances well by maximizing the gradient information flow. 



32 

 

Simultaneously, to deal with the problems that can be caused by the increased 

number of parameters due to direct connections, dimension reductions not only in 

width and height but also in the depth-wise direction are adopted. 

For validation of the proposed method, experimental data obtained from the 

rotor testbed was employed. In order to consider the intrinsic anisotropic 

characteristics of rotor systems, vibration images containing not only temporal 

information but also spatial information along the circumference of the rotating shaft 

are generated and used as the input data. Compared with other machine learning and 

deep learning based methods, the proposed method attains the best diagnosis 

performance accuracy. Also, the effectiveness of the proposed method was verified 

in detail by conducting ablation studies and by analyzing visualization results of the 

learned features. Lastly, the proposed method shows stable and robust diagnosis 

performance under conditions of insufficient or noisy data. 

The rest of this chapter is organized as follows. In Section 3.1, the concept of 

the directly connected convolutional module is explained. In Section 3.2, the 

dimension reduction module is described. Then, Section 3.3 introduces the way to 

generate input vibration images. In Section 3.4, the entire structure and flowchart of 

the proposed method are discussed in detail. Next, in Section 3.5, validations of the 

proposed method with experimental results and analysis are presented. Lastly, 

conclusions of this work are outlined in Section 3.6  
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3.1 Directly Connected Convolutional Module 

One of the main parts of DC-CNN is the directly connected convolution module, 

which is based on the direct connections between different layers in the CNN 

architecture. The major idea of this module is to enhance the gradient information 

flow by improving the connectivity between various layers within CNN. In this 

module, to increase the training efficiency of deep CNN architectures, not only the 

conventional feed-forward path but also short paths that connect the feature maps of 

different layers are employed. The various feature maps, which are the outputs of 

different convolutional layers, were directly connected by concatenating them. For 

example, as shown in Figure 3-1, by connecting the outputs from different 

convolutional layers, the final output of the convolution module with two 

convolutional layers can be expressed as follows: 

0 0 1 2 0 0 0 0
[ , , ] [ , ( ), ([ , ( )])]y x x x x conv x conv x conv x   (3.1) 

where 𝑥0 denotes the input data; 𝑥1 and 𝑥2 denote the outputs of the first and 

second convolutional layers; 𝑦0 denotes the final output of the convolution module; 

𝑐𝑜𝑛𝑣 denotes the convolutional operation; and [𝑎, 𝑏] denotes the concatenation of 

𝑎 and 𝑏. By adopting those direct connections between different layers, the gradient 

information can flow efficiently through multiple paths, rather than through a single 

path during the back-propagation steps. As a result, based on those directly 

connected convolution modules, it is possible to train deeper CNN architectures well, 

without falling into the problems caused by poor gradient information flows. 
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Figure 3-1 Schematic diagram of a directly connected convolution module with 

two convolutional layers. 

 

3.2 Dimension Reduction Module 

Although the gradient information flow can be enhanced by adopting direct 

connections between different feature maps, this increases the depth of the input for 

the subsequent layer. Consequently, the number of parameters for convolution 

operation for that input increases in the depth-wise direction. An increased number 

of trainable parameters may hinder efficient training and make the networks more 

prone to overfitting problems [51], [52].  

In this research, to cope with those problems, a dimension reduction module 

was adopted. Different from conventional CNNs, which only use spatial pooling 

operations to decrease the dimensions of input in width and height, depth-wise 

pooling operations were additionally utilized in this method. For the purpose of 

reducing the dimension in the depth-wise direction, 1x1 convolutions were used. As 

shown in Figure 3-2, 1x1 convolutions produce an output with depth 1 by performing 

convolutional operations using 1x1xD dimension kernels. Therefore, 1x1 

convolutions can reduce the number of parameters needed in the next convolutional 
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layers and, consequently, they can enhance the training efficiency and prevent 

overfitting problems. 

In our dimension reduction modules, both spatial pooling and depth-wise 

pooling were adopted to reduce the dimensions along the H, W, and D directions of 

the feature maps. By using these kinds of dimension reduction modules, the number 

of trainable parameters can be reduced significantly. Thereby, we can train much 

deeper neural network architectures efficiently without the aforementioned problems 

that might otherwise be caused by the increased number of parameters. 

 

 

Figure 3-2 Depth-wise dimension reduction based on 1x1 convolutions. 
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3.3 Input Vibration Image Generation 

To fully understand the health states of complex machinery, it is advantageous 

to obtain as much data as possible. Particularly, for rotor systems, information along 

the circumferential direction of the rotating shaft is important. This information is 

important because of the asymmetric and anisotropic characteristics of the rotor 

systems that arise due to uneven mass distributions, shape asymmetries, and 

anisotropic stiffness of the systems. As shown in Figure 3-3, anisotropic stiffness is 

caused by the stiffness of the components, such as the casing, bearing support, 

foundation, and other attachments, which typically have different values in the 

horizontal and vertical directions. Unequal fluid film stiffness in the radial and 

tangential directions can be another reason [9]. Anisotropic stiffness is common in 

rotor systems and has strong effects on rotor system responses. Another reason for 

the importance of information along the circumferential direction of the rotating 

shaft is the directional characteristics of some abnormal health conditions. For those 

health conditions with directional characteristics, such as rubbing and misalignment, 

the responses of rotor systems are affected by the direction of applied external forces 

[53]. Therefore, vibration signals obtained via sensors installed at fixed positions 

show different waveforms depending upon the relative positions of the faults. 
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Figure 3-3 Sources of anisotropic stiffness in rotor systems. Stiffness distribution 

of rotor systems can be resolved into a strong stiffness axis (𝐾𝑠𝑡𝑟𝑜𝑛𝑔) and a weak 

stiffness axis (𝐾𝑤𝑒𝑎𝑘). 

 

To consider those issues, the virtual vibration signal generation technique was 

adopted. Based on the Omnidirectional Regeneration technique proposed in [53], 

virtual vibration signals can be generated as follows: 
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where 𝑥0 and 𝑦0 denote signals obtained from perpendicularly installed sensors; 

𝑥𝑣 and 𝑦𝑣 denote a pair of generated virtual signals; and ∆𝜃𝑖 denotes the relative 

angular difference between 𝑥0, (𝑦0), and 𝑥𝑣 (𝑦𝑣). By adjusting ∆𝜃𝑖, the signals at 

various circumferential positions can be obtained. Generated virtual vibration signals 

contain information along the circumference of the rotating shaft. As a result, by 

using those signals, we can improve the robustness and performance of the fault 
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diagnosis for rotor systems under the aforementioned anisotropic characteristics.  

As shown in Figure 3-4, by stacking those signals, vibration images containing both 

spatial and temporal information can be generated. 

In this paper, virtual signals generated along the full circumference of the 

rotating shaft were used to convey sufficient information. In addition, thanks to the 

shift-invariant characteristics and autonomous feature learning capability of CNN, 

phase synchronization between generated images is not required. Consequently, 

unnecessary data losses that occur during phase synchronization by removing the 

out-of-phase parts, can be eliminated [54]. As a result, the computational efficiency 

is enhanced and the number of generated images is increased. This is beneficial for 

developing DL-based diagnosis techniques. This can be also advantageous for online 

diagnosis schemes since, in the case of real-time diagnosis, the acquired signals 

typically have unsynchronized, random phases. 
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Figure 3-4 Overall procedure for generating the input vibration images. 
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3.4 DC-CNN-Based Fault Diagnosis Method 

Based on the components explained in previous sections, this doctoral 

dissertation proposes an advanced DL-based fault diagnosis technique for rotor 

systems using DC-CNN [30]. The major building blocks and the overall architecture 

of the proposed method are shown in Figure 3-5. Figure 3-5 (a) shows the directly 

connected convolution module introduced in Section III-B. In contrast to 

conventional CNN, the feature maps of different layers are directly connected. This 

enhances the training performance by making gradient information flow more 

efficiently through additional connections. In the research outlined in this paper, 

basically, two 2-dimensional convolutional layers were used for each convolution 

module. For every convolutional operation, 16 kernels with 3x3 dimension and stride 

1 were used and zero-padding was adopted. Between each convolutional operation, 

batch normalization (BN) was used to accelerate and stabilize the training process 

and ReLU was used as an activation function [55]. Figure 3-5 (b) shows the 

dimension reduction module introduced in Section III-C. By using this module, we 

can reduce the total number of trainable parameters within networks; therefore, we 

can reduce the computational budget and prevent overfitting problems even with 

much deeper CNN architectures. For every 1x1 convolution operation, 16 kernels 

were used. Then, a max-pooling layer that takes the maximum values from each sub-

region with a 2x2 dimension was adopted. Also, BN and ReLU were used before 

1x1 convolutions. 
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(a) (b) 

(c) 

Figure 3-5 Proposed direct connection based CNN (DC-CNN) architecture: (a) directly connected convolution module; 

(b) dimension reduction module; (c) the overall structure of DC-CNN. 
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Figure 3-5 (c) shows the overall structure of the proposed architecture, which 

is composed of several sets of convolution modules and dimension reduction 

modules. First, based on the raw vibration signals obtained from two sensors in 

perpendicular positions, vibration images containing both spatial and temporal 

information of rotor systems are generated, as described in Section 3.3. In this 

research, vibration images containing temporal information of two cycles of 

vibration signals were generated to consider sub-harmonic characteristics of rotor 

systems. As spatial information, virtual signals along the full circumference were 

utilized to consider sufficient information along the shaft. After that, those vibration 

images were normalized to have pixel values in a range from 0 to 1 and resized into 

150x150 dimensions; then, provided as the input to the 2-dimensional convolutional 

layer. Next, deep CNN architectures were constructed by stacking multiple sets of 

convolution modules and dimension reduction modules for the purpose of learning 

high-level representations to accurately diagnose the health states of rotor systems. 

In this research, network architectures constructed with 1 to 6 sets of those modules 

were tested. By using 2-dimensional kernels in convolutional layers, both spatial and 

temporal information within the input vibration images can be analyzed 

simultaneously. After the last dimension reduction module, a max-pooling layer was 

used to extract the most significant information. Then, a flatten layer was used to 

make the output feature maps a one-dimensional vector. Finally, the softmax 

function was utilized to output the vector of probability values 𝑝𝑖
𝑗
, which estimates 

the probability that the input 𝑥𝑖 belongs to class 𝑗, to make the final decision of the 

fault diagnosis. The number of nodes for the softmax function is the same as the 

number of health conditions, 𝐶. Eventually, the final output class of the target rotor 

system can be obtained as the index 𝑗 that has the maximum value of 𝑝𝑖
𝑗
, which 
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can be expressed as argmax
𝑗

𝑝𝑖
𝑗
. Along with the softmax function, the cross-entropy 

loss was used as the cost function for training our model, which can be expressed as: 

1 1

log( )
tB C

k k

i i

i k

L y p
 

 
  

 
   (3.3) 

where 𝑦𝑖
𝑘 denotes the value of the 𝑘𝑡ℎ node for target vector 𝒚𝒊. Then, based on 

the back-propagation algorithm and the mini-batch gradient descent method, we can 

train our DC-CNN-based fault diagnosis models to automatically learn proper 

features from the given training data. In this paper, the batch size was empirically 

selected as 128 from {32, 64, 128, 256}, and the number of training epochs was set 

to 20. In addition, an Adam optimizer was utilized with a learning rate of 0.001, 

chosen from {0.00001, 0.0001, 0.001, 0.01, 0.1}. 

Figure 3-6 shows the flowchart of the DC-CNN-based fault diagnosis method 

for rotor systems; the flowchart summarizes the entire procedure of our proposed 

method. First, as explained previously, it is possible to understand the health states 

of the rotor systems better based on vibration images, which contain both spatial and 

temporal information. Based on the training vibration image data, we train the DC-

CNN-based model using a mini-batch gradient descent method. By using the 

proposed DC-CNN method, a fault diagnosis model with deep network architectures 

can be efficiently trained thanks to the enhanced information flow and the reduced 

number of parameters within the networks. In addition, effective and enriched 

hierarchical features can be obtained by using deeper network architectures. As a 

result, diagnosis models with higher and more stable diagnosis performance can be 

achieved. 
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Figure 3-6 Flowchart of the proposed DC-CNN-based fault diagnosis method. 
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3.5 Experimental Studies and Results 

3.5.1 Experiment and Data Description 

In this research, the vibration signals obtained from the RK4 rotor testbed 

shown in Figure 3-7 were used to validate the proposed method. This testbed, 

supported by fluid-film bearings, was produced by GE Bently Nevada. The main 

components of this test apparatus are a dc motor, a coupling, rotating shafts, fluid-

film bearings, a tachometer, and proximity sensors. The key-phasor signals were 

obtained via a tachometer to measure the rotating speed. The vibration signals were 

obtained via two proximity sensors installed in perpendicular positions. The 

vibration signals used in this work were obtained in four types of health conditions: 

normal, rubbing, misalignment, and oil-whirl. The experiments were conducted 

under steady-state conditions with a rotating speed of 3,600 RPM. For each 

experiment for each class, 60-second-long signals were obtained with a sampling 

rate of 8,500Hz. Figure 3-8 shows examples of generated vibration images for each 

of the four types of conditions that were used as the input data. 

 

Figure 3-7 Rotor testbed: RK4 rotor kit produced by GE Bently Nevada. 
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(a) (b) (c) (d) 

Figure 3-8 Examples of generated vibration images: (a) normal; (b) rubbing; (c) 

misalignment; (d) oil-whirl. 

 

In total, five datasets were obtained from five repetitions of the experiments. 

For each dataset, 1000 vibration images were generated for each health condition. In 

addition, to take the influences of experimental conditions and randomness into 

account and to validate the generalization performance of the proposed methods, we 

made ten combinations of training and test datasets, as shown in Table 3-1. Based 

on those ten combinations of data, we evaluated the diagnosis performance of our 

proposed method and other compared methods. The implementations of all methods 

were carried out on a desktop computer equipped with an Intel Core i7-8700 CPU, 

16 gigabytes of RAM, and NVIDIA GeForce RTX 2080 Ti. 
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Table 3-1 Combinations of training and testing sets based on five experimental 

datasets. 

Dataset 

Combination 
#1 #2 … #10 

Training Set 1, 2, 3 1, 2, 5 … 3, 4, 5 

Testing Set 4, 5 3, 5 … 1, 2 
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3.5.2 Compared Methods 

In order to validate the effectiveness of our proposed method, the diagnosis 

performances of other popular methods were compared. As examples of 

conventional machine learning methods, naïve Bayes (NB), random forest (RF), 

logistic regression (LR), k-nearest neighbors (KNN), and support vector machine 

(SVM) were used [56]–[60]. For these ML-based methods, the feature engineering 

steps are essential prerequisites. In this research, 8 time-domain features and 11 

frequency-domain features, as shown in Table 3-2, were utilized [53], [61]. In 

addition, an extreme learning machine (ELM), a single hidden layer feedforward 

neural network whose hidden-to-output-layer weights are estimated based on the 

Moore-Penrose generalized inverse matrix theory, was used for comparisons [62]. 

As a basic DL method, multi-layer perceptron (MLP), a multi-layer fully connected 

artificial neural network whose weights are learned by the gradient descent algorithm, 

was also used. In this comparison study, we tested the MLPs with 1 to 6 hidden 

layers; the details of their structures are shown in Table 3-3. At the end of the MLP 

structure, the output layer with a softmax function, whose number of nodes is the 

same as the number of health classes, is followed. Since ELM and MLP require 1-

dimensional inputs, the vibration image data flattened into a 1-dimensional vector 

was used, for fair comparisons. For the conventional CNN methods, CNNs with 1 to 

6 sets of convolutional layers and pooling layers were utilized. For fair comparisons, 

32 kernels with 3x3 dimensions were used for each convolutional layer, since two 

convolutional layers with 16 kernels were employed for each convolution module in 

DC-CNN. The same max-pooling layers and the same input vibration images with 

DC-CNN were utilized. Finally, the flatten layer and softmax function followed. 
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Table 3-2 Time- and frequency-domain features used for ML-based methods. 

Time-domain Frequency-domain 

   Max Frequency Center 

   Mean RMS Frequency 

   RMS Root Variance Frequency 

   Skewness 0.5x / 1x 

   Kurtosis 2x /1x 

   Crest Factor (3x~5x) / 1x 

   Shape Factor (3x,5x,7x,9x) / 1x 

   Impulse Factor (1x~10x) / 1x 

 (0~0.39x) / 1x 

 (0.4x~0.49x) / 1x 

 (0.51x~0.99x) / 1x 
 

 

Table 3-3 The number of hidden layers and nodes for MLP-based fault diagnosis 

methods. 

Number of hidden layers Number of nodes in hidden layers 

1 4000 

2 4000-2000 

3 4000-2000-1000 

4 4000-2000-1000-500 

5 4000-2000-1000-500-250 

6 4000-2000-1000-500-250-100 
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Lastly, a comparison with the existing method which tries to improve gradient 

information flow using short connections was performed. As shown in Figure 3-9, a 

model using residual learning based on identity mapping was employed for 

comparison [21]. This approach combines features through summation of the results 

of nonlinear mapping and identity mapping. The schematic diagram of this skip 

connection based CNN model is shown in Figure 3-10. For fair comparisons, the 

same number of convolutional kernels with 3x3 dimensions were used for each 

convolutional layer: two convolutional layers with 16 kernels were employed for 

each skip connection module. Also, the same structure was used for all other parts. 

 

Figure 3-9 Conceptual diagram of residual learning. 

 

 

Figure 3-10 Schematic diagram of skip connection based CNN model. 
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3.5.3 Diagnosis Performance Results 

The diagnosis accuracy of the proposed and compared methods for the RK4 

rotor testbed are shown in Figure 3-11. Diagnosis accuracy in this figure shows the 

mean accuracy values for the ten combinations of datasets mentioned in Table 3-1; 

the error bars show their standard error values. The number 1 to 6 in the name of the 

DL-based method represents the number of building blocks for each method. 

Figure 3-11 shows that DC-CNN-based methods achieved better performance 

than any other compared methods. ML-based methods show relatively poor 

performance, although they used domain knowledge based features. By looking at 

the results from neural network-based methods, similar diagnosis performance with 

ML-based methods can be achieved even without feature engineering steps. 

Therefore, we can say that domain knowledge dependency problems can be 

alleviated by using DL. CNN-based methods show better diagnosis performance 

than MLP-based methods that employed the vibration image data flattened into a 1-

dimensional vector as input data. This result shows that the fault diagnosis 

performances can be improved by adopting the 2D vibration images containing both 

temporal and spatial information as the input data, along with CNN, which can 

consider multiple dimensional information within input data.  

By stacking the networks deeper, we can somewhat improve the diagnosis 

performance of DL-based models. However, from the results of MLP and CNN, we 

can see that the performance does not increase monotonically as the number of layers 

is increased. As explained in previous sections, poor gradient information flow and 

overfitting can be the main reasons for those problems. In contrast, using DC-CNN, 

we can achieve better diagnosis performance by making network architectures 
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deeper. For DC-CNN, the model with the deepest network architecture (DC-CNN6) 

achieved the best overall performance with the lowest standard error value. In 

conclusion, we can say that DC-CNN-based fault diagnosis methods lead to the best 

diagnosis performance among all of the compared methods, by making the efficient 

training of deep CNN models possible. 

Moreover, in order to verify the effectiveness of the proposed DC-CNN-based 

fault diagnosis method, ablation studies were conducted. The average diagnosis 

accuracy and standard error values for four types of models were investigated; the 

four types of models are as follows: (1) the CNN model without either directly 

connected convolutional modules or dimension reduction modules, (2) the proposed 

model without dimension reduction modules, (3) the proposed model without 

directly connected convolutional modules, and (4) the proposed DC-CNN-based 

model, with both types of modules. The results are shown in Table 3-4. 

By comparing the conventional CNN model, which does not adopt either type 

of module, and the methods in which the proposed modules were used, the 

effectiveness of the directly connected convolutional module and dimension 

reduction module can be confirmed. In addition, our proposed method, which 

adopted both modules, maximizes the diagnosis accuracy with the smallest standard 

error value. In conclusion, from these ablation studies, we can validate the 

effectiveness and robustness of our proposed DC-CNN-based fault diagnosis method. 
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Figure 3-11 The diagnosis performance results of the proposed and compared methods. 
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Table 3-4 Average diagnosis accuracy and standard error results for ablation studies. 

Model types Diagnosis accuracy (%) Standard error 

w/o both modules 95.71 0.0169 

w/o dimension reduction modules 98.33 0.0120 

w/o directly connected convolutional modules 98.59 0.0117 

Proposed 99.25 0.0071 
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Next, the results of comparing the training time of each DL-based method are 

shown in Table 3-5. In the case of DC-CNN, it can be seen that the training time 

required per epoch is higher than other methods. However, as shown in Figure 3-12, 

DC-CNN takes fewer training epochs to complete model training. Therefore, 

eventually, taking a longer time per epoch for DC-CNN is not a big problem in the 

learning process. 

 

Table 3-5 Diagnosis accuracy and training time for DL-based methods. 

Model type MLP CNN DC-CNN 

Diagnosis accuracy (%) 95.21 95.96 99.25 

Training time (seconds) 6 6 25 
 

 

 

Figure 3-12 Learning curves of (a) CNN model; and (b) DC-CNN model. 

 

Lastly, the results of comparing the diagnosis accuracy and training time of the 

proposed method and the skip connection based method are shown in Table 3-6. As 

can be seen in this result, the proposed DC-CNN method requires a shorter learning 
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time per training epoch and shows higher final diagnosis performance compared to 

the skip connection based method. Also, in the case of the proposed method, by 

concatenating several features through direct connections, it can maintain all feature 

information from several layers and therefore, has the advantage of being able to 

learn diverse features. 

 

Table 3-6 Diagnosis accuracy and training time for the skip connection based 

method and the proposed methods. 

Model type Skip Connection DC-CNN 

Diagnosis accuracy (%) 97.98 99.25 

Training time (seconds) 60 25 
 

 

 

3.5.4 The Number of Trainable Parameters 

In order to reduce the number of parameters for constructing efficient DL 

models, dimension reduction modules were employed in DC-CNN. In the research 

outlined in this section, the number of trainable parameters for DL-based methods 

was investigated to verify the effects of the proposed DC-CNN-based fault diagnosis 

method. 
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Figure 3-13 Diagnosis accuracy and the number of trainable parameters for DL-

based methods. (Bar: diagnosis accuracy, Dot: the number of parameters) 

 

Figure 3-13 shows the number of trainable parameters and diagnosis accuracies 

of the various DL-based methods. The values for MLP, CNN, and DC-CNN in this 

figure are from the models with the highest diagnosis accuracy among the six 

different models of each DL-based method described in Section 3.5.3. In addition, 

the result of the proposed model without dimension reduction modules is compared 

to validate the effects of those modules on the number of parameters within the 

model. As can be seen in Figure 3-13, our proposed method results in the best 

diagnosis performance with the smallest number of parameters. It is important to 

note that for DC-CNN, the best model was the deepest model, and – even for this 

deepest model – the number of parameters was smaller than in other DL-based 

models. This advantage is achieved through the dimension reduction modules of the 
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proposed method; this can be confirmed by comparing the number of parameters 

according to whether or not the dimension reduction modules are used. By adopting 

the dimension reduction modules, the number of parameters could be greatly reduced. 

As a result, the advantages of DC-CNN-based methods make it possible to build 

diagnosis models with deep architectures efficiently; this, in turn, leads to better 

diagnosis performance.  

 

3.5.5 Visualization of the Learned Features 

In order to examine and understand the DL-based models qualitatively, 

visualization of the learned features can be conducted. In this section, two kinds of 

visualization results are provided to show the effectiveness of the proposed DC-

CNN-based method. First, the distributions of the learned features were visualized 

based on the t-distributed Stochastic Neighbor Embedding (t-SNE) method. t-SNE 

is a dimension reduction method that maps the high-dimensional data into the low-

dimensional embedded space [63]. Using t-SNE, we can map the features extracted 

by DL-based methods into two-dimensional spaces. By visualizing them, we can 

verify how efficient the learned features are for the diagnosis of target rotor systems. 
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Figure 3-14 Feature visualization using t-SNE: (a) input raw data; learned features of (b) 

MLP; (c) CNN; (d) DC-CNN. 
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Figure 3-14 shows the visualization of the raw input data and learned features 

based on the DL methods. Based on those t-SNE-based plots, the effectiveness of 

the learned features in the diagnosis of the fault classes can be investigated. The 

learned features from the proposed DC-CNN-based methods result in the best 

clustering characteristics. This means that data in the same health condition are well-

grouped in the learned feature space and also well-separated from the data from other 

conditions. Therefore, based on the proposed method, high diagnosis accuracy can 

be obtained by learning the features that make data well-clustered for each health 

condition. On the other hand, for other methods, there are some overlaps in the data 

from different classes and some data from the same class is separated. Those features 

that are not well-clustered for each health condition adversely affect the diagnosis 

accuracy. 

Second, for CNN-based methods, the visualization of the feature maps can 

provide meaningful insights [46], [64]. Therefore, the feature maps of CNN and DC-

CNN were visualized as shown in Figure 3-15 for the normal condition. In Figure 

3-15 (a), for the CNN-based model, there are lots of inactivated, noise-like feature 

maps, and similar feature maps that may provide redundant information. In contrast, 

in Figure 3-15 (b), the DC-CNN-based model has absolutely no inactivated feature 

map and there are diverse kinds of learned feature maps. Those observations imply 

that DC-CNN-based methods can learn enriched features for fault diagnosis 

efficiently and properly. 
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(a) 

 

(b) 

Figure 3-15 Visualization of the feature maps of (a) CNN-based; (b) DC-CNN-

based models for a normal condition. 

In conclusion, from the above two visualization results of learned features, it 

can be seen that DC-CNN can learn better features more effectively than other 

methods. This is one of the major reasons why DC-CNN-based approaches yield 

better diagnosis performance. 
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3.5.6 Robustness of Diagnosis Performance 

The ultimate goal of developing fault diagnosis techniques is to enhance the 

reliability of the machinery operating in real industrial fields. Therefore, when 

developing fault diagnosis techniques, it is necessary to consider issues that may 

occur in real-world settings and to develop algorithms that are robust when faced 

with those issues. The first issue we may encounter in the field is the amount of data 

available. In order to train diagnosis models completely, a sufficient amount of data 

is required. However, in real operating situations, it is not easy to collect enough 

training data. An insufficient amount of training data may worsen the training 

efficiency and lower the performance of diagnosis models. As a result, it is very 

important to develop the diagnosis methods to be robust to the amount of training 

data. In this section, to examine the robustness of DC-CNN methods to the amount 

of training data, we investigated its diagnosis performance for situations with various 

amounts of training data. 

Figure 3-16 presents the diagnosis accuracies of DL-based models trained with 

various numbers of training samples. The number of training data in the x-axis 

expressed as a percent represents the ratio of the number of data used for training to 

the total number of training data. In this figure, it can be seen that as the number of 

training data decreases, so does the diagnosis performance. In addition, we can see 

that our DC-CNN-based method shows the best performance in all cases. For other 

DL-based methods, diagnosis performance decreases more steeply as the number of 

training data decreases. On the other hand, in the case of DC-CNN-based methods, 

the diagnosis performance is relatively high, even when the number of data is very 

small.
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Figure 3-16 The diagnosis performance results of DL-based methods with different numbers of training data. 
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These results show that our proposed method can learn the diagnosis models 

very efficiently and provide high diagnosis performance even with a small amount 

of data. These stable and robust characteristics might be the results of the increased 

training efficiency that is due to the improvement of gradient information flow. In 

contrast, for MLP- and CNN-based methods, the diagnosis performance is highly 

dependent on the amount of data; therefore, these methods may be inadequate for 

use in real settings where there is a lack of data. 

The next issue that may exist in real industrial sites is the issue of noisy data, 

which can be caused by environmental and operational randomness. In the real world, 

various noises inevitably exist and it is impossible to train the diagnosis models to 

consider all possible noises in advance. Thus, the noise that wasn’t present during 

the training phase may be present in the test data; this can drastically degrade the 

effectiveness of the trained diagnosis models. Therefore, it is necessary to develop 

diagnosis models that are robust for various noisy data. For the purpose of verifying 

the robustness of the proposed methods against noisy data, additive white Gaussian 

noises with different signal-to-noise ratios (SNR) were added to test datasets. The 

SNR in decibels (dB) is defined as follows: 
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where 𝑃𝑠𝑖𝑔𝑛𝑎𝑙  and 𝑃𝑛𝑜𝑖𝑠𝑒  denote the power of the signal and the additive white 

Gaussian noise, respectively. 

The diagnosis results for the test data with additive noise are shown in Figure 

3-17. It can be observed that for all methods, the higher the ratio of noise, the lower 
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the diagnosis performance, since the additional noise causes some variations in the 

characteristics and distributions of the test data. It can also be seen that the proposed 

DC-CNN-based method outperforms the other DL-based methods for all SNR values. 

In addition, the proposed method shows high diagnosis performance even if some 

noise is added; whereas, the other methods show very rapid degradation of 

performance with additive noises. 

In conclusion, the proposed method yields more robust and stable 

generalization performance against additive noise, as compared to other methods. 

This may be due to the following advantages of DC-CNN. First, enriched features 

for diagnosis can be obtained through efficient training thanks to improved 

connectivity within network architectures. At the same time, by reducing the number 

of parameters, the overfitting problem can be prevented. This results in improved 

generalization performance. 

In summary, based on the above two experimental results, it was confirmed that 

the proposed DC-CNN-based fault diagnosis method can work well under several 

issues that may occur in real-world operating environments, such as in cases of 

insufficient training data or inevitable noise conditions.
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Figure 3-17 The diagnosis performance results of DL-based methods under different levels of additive noise . 
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3.6 Summary and Discussion 

In this research, a novel DC-CNN method, composed of directly connected 

convolution modules and dimension reduction modules, was proposed for fault 

diagnosis of mechanical systems. The goal of DC-CNN is to enhance the training 

efficiency and diagnosis performance by improving the gradient information flow 

and reducing the number of parameters. In addition, in this study, the vibration image 

generation technique was adopted to consider the intrinsic anisotropic characteristics 

of the rotor system, which was used for validation. By using DC-CNN, not only can 

outstanding diagnosis performance (over 99% diagnosis accuracy) be obtained, 

efficient training can also be conducted. The proposed method outperformed other 

DL-based methods, even with the smallest number of parameters. The ablation 

studies demonstrated that the proposed method maximizes the diagnosis 

performance with the smallest standard error value, thanks to the proposed modules. 

The visualizations of the learned features showed that the proposed method can learn 

effective and enriched features. In addition, the proposed method showed stable and 

robust performance, even with a limited number of training data and additive noise 

conditions; this demonstrates the superiority of our method for real-world problems. 
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Chapter 4  

 

Robust and Discriminative Feature 

Learning for Fault Diagnosis Under 

Insufficient and Noisy Data 

Conditions 

For data-driven strategies including deep learning, sufficient data is required to 

train high-performance fault diagnosis methods. Otherwise, it is very hard to secure 

accurate and robust diagnosis performances as can be seen in Figure 4-1. However, 

in real industrial fields, it is not easy to obtain as much data as we need from systems 

of interest to train diagnosis models well. Especially, it is hard to obtain a sufficient 

amount of fault data, since machines usually work in a normal condition and faults 

are rare. In addition, in the case of newly operated systems, the amount of acquired 

data is small. Moreover, data-driven methods work well under the assumption that 

the training and test data share the same distributions. However, for the mechanical 

systems operating in real industrial sites, there can be lots of noises caused by 

environmental and operational randomness. Noises can cause variations in the 

distribution of training and test data, and as a result, it may become hard to acquire 

high diagnosis performances for test data. This can be seen in Figure 4-2. 

In this chapter, we adopt the transfer learning and metric learning concepts to 

train superior fault diagnosis models even under insufficient data and noisy data 



69 

 

conditions. First, robust features can be learned by transferring the feature and 

parameter information obtained from a different domain that has an abundant amount 

of data. In addition, semantically better aligned and more discriminative features can 

be learned by adopting semi-hard triplet loss for training the fault diagnosis models. 

As a result, better fault diagnosis models can be obtained under insufficient and noisy 

data conditions. 

 

Figure 4-1 The learning results of the fault diagnosis models according to the 

amount of data. 

 

 

Figure 4-2 The learning results of the fault diagnosis models according to the 

amount of noisy data. 
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The effectiveness of the proposed method was verified using the data obtained 

from the rotor testbed. The fault diagnosis performances were comprehensively 

compared for the case where there was insufficient data and the case where the data 

contained noise. In addition, the learning curve was analyzed to compare how well 

the model learned, and the visualization results of the feature distribution were 

compared to confirm the superiority of the learned features. 

The remainder of Chapter 4 is organized as follows. Section 4.1 provides the 

concept of parameter transfer learning. Then, robust feature learning based on the 

pre-trained model is presented in Section 4.2. In Section 4.3, discriminative feature 

learning by adopting the triplet loss term is described. Section 0 describes the overall 

learning procedure of the proposed method. Next, in Section 4.5, the experimental 

results and analyses are given. Finally, summary and discussion are outlined in 

Section 4.6. 

 

4.1 Parameter transfer learning 

As mentioned in Chapter 2.2, transfer learning is a learning method that 

transfers and uses information and knowledge acquired from different but related 

source domains. This allows the model to be trained more efficiently even in 

situations where data is insufficient. Due to this advantage, transfer learning is 

actively used when training the data-driven models. Among them, the parameter 

transfer approach is a method that conveys the parameters of the model learned from 

the source domain to the target domain. In other words, by discovering and sharing 

the common parameters, knowledge can be transferred across different domains and 
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tasks. 

In practice, since data is often insufficient, it is not easy to obtain the model 

with high performance when training the deep learning model from scratch. So, 

instead of training a randomly initialized model from scratch, many people train the 

deep learning model by using a model already trained in a source domain that has 

sufficient data as an initial model. This kind of model that has already been trained 

in the source domain is called a pre-trained model. The schematic diagram of the 

parameter transfer learning scheme is presented in Figure 4-3. First, the model is 

trained using supervised learning based on the abundant source domain data. After 

that, some parts of this pre-trained model are transferred to the target domain. Then, 

the new model for the target domain, containing shared parameters is retrained using 

target domain data. This parameter transfer method based on the pre-trained models 

assumes that individual models for related domains and tasks may share some 

parameters. As mentioned in Section 2.2, and as shown in Figure 2-9, by utilizing 

the pre-trained model, training of the deep neural network models can become stable, 

efficient, and fast. Also, the final diagnosis performance can be improved. 
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Figure 4-3 Schematic diagram of the parameter transfer learning scheme for 

neural network based model. 

 

4.2 Robust Feature Learning Based on the Pre-trained model 

In this study, in order to efficiently train deep learning based fault diagnosis 

techniques even under insufficient data conditions, the parameter transfer method is 

used. The diagnosis model with high generalization performances for the target 

system can be learned by transferring and employing the pre-trained model obtained 

from the source domain containing a large amount of data. This enables robust and 

reliable feature learning of the diagnosis model. In this research, the ImageNet 

challenge (ImageNet Large-Scale Visual Recognition Challenge, ILSVRC) dataset 
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was used as the source domain. This dataset is a very large-scale database designed 

for use in visual object recognition research. It consists of more than 14 million 

images that are annotated. Since the ImageNet dataset contains a large amount and 

various image data, it is possible to obtain general and superior features that are 

effective in representing images from this data. As a pre-trained model, the VGG19 

model trained using this ImageNet data was adopted [18]. VGG19 is a model 

developed by researchers from the University of Oxford, which is a deep 

convolutional network model made by repeatedly stacking 3x3 convolutions deeply, 

as shown in Figure 4-4. This model is used in many areas due to its high performance 

and relatively simple network structure. 

The strategy to increase the learning efficiency and diagnosis performance in 

the target domain by transferring the parameters of the pre-trained model is as 

follows. By transferring and reusing the feature extractor part learned through a large 

number of source domain images, robust and reliable feature learning can be 

achieved when training the diagnosis model in the target domain. Then, the classifier 

part is newly constructed according to the number of target domain labels, attached 

to the top of the feature extractor part, and trained with the target data. At this time, 

by fine-tuning the entire model, which consists of the transferred feature extractor 

part and the newly attached classifier part, with target data, a diagnosis model 

suitable for the target domain can be finally obtained. Figure 4-5 shows a schematic 

diagram of the training processes of the CNN-based fault diagnosis method. A 

learning strategy using a conventional supervised learning scheme is presented in 

Figure 4-5 (a). Figure 4-5 (b) demonstrates the diagnosis model training process 

based on the parameter transfer learning strategy. As the pre-trained model, the CNN 
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model trained using ImageNet data as the source domain was adopted. By using a 

transfer learning scheme like this, robust and stable feature learning is possible. 
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Figure 4-4 The network structure of the VGG 19 model. 



76 

 

 
(a) 

 

(b) 

Figure 4-5 Schematic diagram of the training processes of CNN-based fault diagnosis 

method: (a) using conventional supervised learning strategy; (b) using transfer learning 

strategy. 
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4.3 Discriminative Feature Learning Based on the Triplet 

loss 

In this research, we propose a learning approach that can obtain more 

discriminative features by training a deep learning based fault diagnosis model using 

an additional metric learning based loss term. As explained in Chapter 2.3, metric 

learning is a type of learning strategy that can acquire semantically well-aligned and 

well-separated features based on a distance metric. This can be achieved by placing 

similar samples with the same label closer together and dissimilar samples with 

different labels farther apart. In this study, triplet loss is used as an additional loss 

function to learn superior feature embedding. The concept of triplet loss can be 

confirmed in Figure 4-6. It aims to make the distance between a pair of samples with 

same label smaller than the distance between a pair with different labels. As shown 

in Figure 4-6, the anchor (𝑎) is a baseline sample, and the positive sample (𝑝) is 

a sample that has the same label with an anchor. Oppositely, the negative sample 

(𝑛) is a sample whose label is different from the anchor sample. Based on the triplet 

loss, we want to ensure that the anchor is closer to all other samples with the same 

label than any sample with different labels, and this can be expressed as follows: 

‖𝑓(𝑎) − 𝑓(𝑝)‖2 + α < ‖𝑓(𝑎) − 𝑓(𝑛)‖2 (4.1) 

where 𝑓(𝑥)  denotes the feature embedding; and 𝛼  denotes a margin that is 

enforced between positive and negative pairs. The triplet loss function to be 

minimized can be expressed as follows: 

𝐿𝑡𝑟𝑖𝑝𝑙𝑒𝑡(𝑎, 𝑝, 𝑛) = max⁡(‖𝑓(𝑎) − 𝑓(𝑝)‖2 − ‖𝑓(𝑎) − 𝑓(𝑛)‖2 + α, 0) (4.2) 

Therefore, by minimizing this loss term, we push the distance between 𝑎 and 𝑝 to 
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0, and make the distance between 𝑎 and 𝑛 to be greater than the positive distance 

plus margin. As a result, we can make negative distances at least greater than the 

positive distance plus the margin. 

 

 

Figure 4-6 Schematic diagram of semi-hard triplet loss. 

For effective feature learning and fast convergence, it is essential to select triplet 

samples that violate the constraint in Equation (4.1). That is, a hard positive, which 

is a positive sample as far as possible from the anchor, and a hard negative, which is 

a negative sample as close as possible to the anchor sample, should be selected. Such 

hard positive and hard negative can be expressed as follows: 

𝑎𝑟𝑔𝑚𝑎𝑥𝑝𝑖
‖𝑓(𝑎) − 𝑓(𝑝𝑖)‖ (4.3) 

𝑎𝑟𝑔𝑚𝑖𝑛𝑥𝑛𝑖
‖𝑓(𝑎) − 𝑓(𝑛𝑖)‖ (4.4) 

where 𝑝𝑖 and 𝑛𝑖 denote possible candidates for positive and negative samples. In 

practice, however, when the most difficult negative sample was selected, training 

may not be performed efficiently in the early stage of learning. In other words, the 
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model can fall into bad local minima, and it may lead to a collapsed model whose 

feature embedding results in like this: 𝑓(𝑥) = 0. To solve this problem, we use the 

semi-hard negative samples located in the orange region in Figure 4-6. These are the 

negative samples that are not closer to the anchor than the positive samples, but still 

difficult; which means that these negative samples make the loss function positive. 

In other words, those semi-hard negatives are further away from the anchor than the 

positive samples, and simultaneously, their distance to the anchor sample is close to 

the anchor-positive distance. So, they lie inside the margin α . In addition, for 

calculating the triplet loss function, the positive and negative samples are selected 

within a mini-batch, and then semi-hard triplet loss is computed based on the semi-

hard negative and hard positive samples. This is called online triplet mining. 

Consequently, based on this additional triplet loss function, discriminative features 

with semantically well-separable characteristics can be learned. As a result, as can 

be seen in Figure 4-7, by learning separated features, it is possible to compensate for 

the performance degradation caused by the distribution variation due to noises and 

obtain a good diagnosis model. 

 

Figure 4-7 Schematic diagram showing the effect of metric learning under noise 

conditions. 
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4.4 Robust and Discriminative Feature Learning for Fault 

Diagnosis 

The method proposed in this study uses the parameter transfer and metric 

learning concepts to obtain high target diagnosis performances even under 

insufficient data and noisy data conditions. First, as mentioned in Chapter 4.2, the 

feature extractor part of the VGG model, a deep CNN model learned using abundant 

ImageNet data as a source domain, is transferred as a pre-trained model to the target 

domain. Through this, robust feature learning for fault diagnosis of the mechanical 

systems under the issue of insufficient data is possible. Next, as mentioned in 

Chapter 4.3, discriminative feature learning is possible by using a semi-hard triplet 

loss as an additional loss function. Through this, it is possible to improve health state 

classification performance by learning well-separated features according to the class 

label. As a result, high diagnosis performance can be obtained even under lack of 

data issues or noise problems. 

Figure 4-8 is a schematic diagram showing the overall learning procedure of 

the proposed method. First, the feature extractor part of the CNN model learned from 

the source domain having abundant data is transferred to the target domain. As the 

pre-trained model, VGG19 shown in Figure 4-4 is utilized. The feature extractor part 

consisting of a combination of several convolutional and pooling layers, which is the 

part before the fully connected layer, is transferred. Then, a new classifier for fault 

diagnosis of the target domain is constructed and attached to the end of the 

transferred feature extractor part. This classifier part is generally composed of a fully 

connected neural network, and the number of output nodes is 𝐶 , the number of 

health class labels of the target system. In the output layer, the softmax function is 
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used to outcome the probability values that the input data belongs to each class label. 

The entire model composed of the transferred feature extractor part and target 

classifier part is trained based on the categorical cross-entropy loss, by which the 

conventional fault diagnosis models are trained. This categorical cross-entropy loss 

can be expressed as follows: 

𝐿𝑐𝑟𝑜𝑠𝑠−𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = −∑𝑌𝑖 𝑙𝑜𝑔(𝑝𝑖)

𝐶

𝑖=1

 (4.5) 

where 𝑌𝑖 denotes the value of the 𝑖th node of true label vector 𝑌; and 𝑝𝑖 denotes 

the value of the 𝑖th node for the output vector p, which is the result of the softmax 

function. At the same time, our proposed method maximizes the diagnosis 

performance by increasing the class-wise separability of the learned features based 

on the additional semi-hard triplet loss. In conclusion, the final loss function of the 

proposed fault diagnosis method is expressed as: 

𝐿 = 𝐿𝑐𝑟𝑜𝑠𝑠−𝑒𝑛𝑡𝑟𝑜𝑝𝑦 + 𝜆𝐿𝑡𝑟𝑖𝑝𝑙𝑒𝑡  (4.6) 

where 𝐿𝑐𝑟𝑜𝑠𝑠−𝑒𝑛𝑡𝑟𝑜𝑝𝑦  and 𝐿𝑡𝑟𝑖𝑝𝑙𝑒𝑡  denote the categorical cross-entropy loss and 

semi-hard triplet loss that can be calculated through Equations (4.5) and (4.2); and 

𝜆 denotes the balancing parameters for both loss functions. Then, based on the back-

propagation and mini-batch gradient descent method, we can train the proposed fault 

diagnosis models to autonomously learn robust and discriminative features from the 

training data. In this research, the batch size was set to 32, and the number of training 

epochs was set to 50. Furthermore, the RMSprop optimizer was utilized with a 

learning rate of 2e-5. Also, the balancing parameter 𝜆  for loss functions was 

empirically selected as 1. In addition, for the classifier part, a fully connected neural 
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network that consists of two layers with dimensions of 512 and 𝐶 , is utilized. 

Through the proposed fault diagnosis method, it was possible to obtain a fault 

diagnosis model for mechanical systems with high diagnosis performances under 

insufficient and noisy data conditions. 

 

 



83 
 

 

 

Figure 4-8 Schematic diagram of the proposed fault diagnosis method based on the parameter transfer and semi-hard 

triplet loss. 
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4.5 Experimental Studies and Results 

4.5.1 Experiment and Data Description 

In this research, the vibration signals obtained from the RK4 rotor testbed 

shown in Figure 3-7 were used to validate the proposed method. The detailed 

information for the testbed is mentioned in Chapter 3.5.1. The vibration signals used 

in this study were obtained for five types of health conditions: normal, unbalance, 

rubbing, misalignment, and oil-whirl. The vibration images containing both spatial 

and temporal information were generated based on the ODR techniques as explained 

in Chapter 3.3. In the direction of the time axis, a two-cycle signal consisting of 256 

sample points was used. Using real and virtual sensor signals at 64 points along the 

entire circumferential direction, a 256x64 dimensional vibration image was finally 

generated and used. 

The proposed method was validated using five datasets obtained through five 

repetitions of the experiments. Each dataset consisted of 400 data for each health 

state, a total of 2000 data. In addition, in order to effectively verify the performance 

of the proposed method in consideration of the influence due to environmental 

factors or randomness, the verification was performed based on all possible training 

and test data combinations, a total of 20 cases. These combinations of datasets are 

shown in Table 4-1. The implementations of the proposed method and compared 

methods were conducted on a desktop computer equipped with an Intel Core i7-8700 

CPU, 16 GB of RAM, and NVIDIA GeForce RTX 2080 Ti. 
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Table 4-1 Combinations of training and testing sets based on five experimental 

datasets. 

Dataset 

Combination 
#1 #2 #3 #4 #4 … #19 #20 

Training Set 1 1 1 1 2 … 5 5 

Testing Set 2 3 4 5 1 … 3 4 
 

 

4.5.2 Compared Methods 

To verify the effectiveness of our proposed method based on the parameter 

transfer and metric learning concepts, the diagnosis performances of other CNN-

based methods were compared. First, to validate the effect of the parameter transfer 

learning scheme, the comparison was performed using the CNN model whose 

architecture is identical with the proposed method, but the weight parameters are 

randomly initialized. Moreover, a comparison using the shallower model was also 

performed. The shallow model consisting of four sets of convolutional and pooling 

layers was compared, and the detailed information of the used architecture is shown 

in Table 4-2. In those compared models, for the classifier part, the same structure 

explained in Chapter 0 was adopted. In addition, to confirm the effectiveness of the 

semi-hard triplet loss, the diagnosis results of the CNN-based models using 

𝐿𝑐𝑟𝑜𝑠𝑠−𝑒𝑛𝑡𝑟𝑜𝑝𝑦  only and the CNN-based model using both loss functions were 

compared. In summary, five compared methods were analyzed, except for the 

proposed diagnosis method which adopted both deep pre-trained model and semi-

hard triplet loss. 
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Table 4-2 The configuration of the shallower CNN-based fault diagnosis model. 

Shallower CNN model configuration 

Feature extractor 

part 

3x3 conv (32) 

max pool 

3x3 conv (64) 

max pool 

3x3 conv (128) 

max pool 

3x3 conv (128) 

max pool 

flatten 

Classifier part 

FC (512) 

FC (5) 

Softmax 
 

 

4.5.3 Experimental Results Under Insufficient Data Conditions 

In this chapter, the experimental results under insufficient data conditions are 

presented. First, the learning curves of the proposed and compared methods are 

shown in Figure 4-9. In this comparison study, the effects of parameter transfer of 

pre-trained model can be confirmed. As can be seen in this figure, much more stable 

training can be performed through the proposed method. On the other hand, deep 

CNN model without parameter transfer and shallower model showed unstable, 

wiggly training curve. Consequently, the final diagnosis performances of the 

proposed method are higher than any other compared methods.  
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The diagnosis performance results with different numbers of training data are 

shown in Figure 4-10. The proposed method shows relatively slow performance 

degradation as the number of training data decreases, compared to other methods. 

Thanks to robust feature learning based on the transfer of abundant information 

learned from the source domain, superior diagnosis performances can be acquired 

by the proposed method. In addition, based on the proposed method which adopted 

both transfer learning and metric learning concepts, discriminative and semantically 

well-aligned features were obtained, as shown in Figure 4-11. As a result, we can 

confirm that accurate and robust fault diagnosis models can be learned based on the 

proposed method. 
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(a) 

 

(b) 
 

(c) 

Figure 4-9 Learning curves of (a) shallow CNN model; (b) randomly initialized 

deep CNN model; and (c) pre-trained deep CNN model (proposed). 
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Figure 4-10 The diagnosis performance results of the proposed and compared methods with different numbers of training 

data. 
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Figure 4-11 Feature visualization using t-SNE under insufficient data condition. 



91 

 

 

Lastly, the results of comparing the training time of each method are shown in 

Table 4-3. For deep CNN architectures, the training time required per epoch 

increases compared to shallower model. However, as shown in Figure 4-9, for the 

proposed method, the number of training epochs required for the model to converge 

is much smaller than other methods. Consequently, it can be seen that our proposed 

method can train the diagnosis model much faster than other methods, and also the 

final diagnosis performance is much higher. 

 

Table 4-3 Diagnosis accuracy and training time for the proposed and compared 

methods. 

Model type Shallow CNN Deep CNN Pre-trained deep CNN 

Diagnosis accuracy (%) 87.4 84.9 97.9 

Training time (seconds) 2 2 8 
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4.5.4 Experimental Results Under Noisy Data Conditions 

The diagnosis performance results with additive noise are shown in Figure 4-12. 

The proposed method shows relatively small performance degradation with 

increasing noises, compared to other methods. This is due to the robust and 

discriminative feature learning capability of the proposed method based on the 

parameter transfer and metric learning concepts. In addition, based on the proposed 

method, semantically well-separated features were obtained under noisy data 

conditions, as shown in Figure 4-13. Consequently, based on the proposed method, 

the high diagnosis performances for test data can be achieved under noisy data 

conditions. 
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Figure 4-12 The diagnosis performance results of the proposed and compared methods under different levels of additive 

noise. 
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Figure 4-13 Feature visualization using t-SNE under noisy data condition. 
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4.6 Summary and Discussion 

In this research, to obtain high target diagnosis performances even under 

insufficient data and noisy data conditions, a fault diagnosis method based on the 

parameter transfer and metric learning concept was proposed. First, the feature 

extractor part of the VGG model which was learned using abundant ImageNet data 

is transferred as a pre-trained model to the target domain. In addition, by using a 

semi-hard triplet loss as an additional loss function, discriminative features that are 

semantically well-aligned were obtained. As a result, high diagnosis performances 

can be obtained even under lack of data issues or noise problems. Comparative 

studies were performed using the various amount of training data and signal-to-noise 

ratio. For all cases, the proposed method showed the highest diagnosis performances. 

Also, as can be seen from the learning curve results, the proposed method was able 

to learn the diagnosis models most reliably and quickly. In addition, through the 

visualization results of the feature distributions, it was confirmed that the proposed 

method learned the superior and well-separated features. 
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Chapter 5  

 

A Domain Adaptation with 

Semantic Clustering (DASC) 

Method for Fault Diagnosis 

 

Recently, deep learning based approaches have shown remarkable fault 

diagnosis performance, thanks to their autonomous feature learning ability which in 

turn alleviates domain-knowledge-dependent problems [30], [65], [66]. To develop 

robust fault diagnosis methods using deep learning, sufficient labeled datasets must 

be obtained from the target system for every health condition of interest as shown in 

Figure 5-1 [31], [32]. Further, it is useful to point out that data-driven methods, 

including deep learning, offer satisfactory performance when both the test and 

training data can be assumed to share a distribution of the same type as shown in 

Figure 5-2 [33], [34]. However, for real-world rotating machinery, it is challenging 

to secure sufficient labeled datasets. Moreover, in many cases, the training and test 

data exhibit the different types of distribution due to environmental noise or 

changing operating conditions [11], [67]. Furthermore, if training data and test data 

are obtained from distinct systems, these data sets are more likely to have dissimilar 

distributions [68], [69]. As a result, it is hard to use conventional supervised learning 

schemes, as shown in Figure 5-3 (a), to train robust fault diagnosis models with high 

generalization performance.  
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Figure 5-1 The learning results of the fault diagnosis models according to the 

amount of available label information.  

 

 

Figure 5-2 The learning results of the fault diagnosis models according to the 

similarity of the source and target domain distributions. 
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Figure 5-3 Conceptual diagram of distributions for source and target domain data with domain 

discrepancy in the feature space learned by using (a) the conventional approach, (b) the UDA approach, 

and (c) the proposed DASC approach. The dotted blue line represents the decision boundary of the 

learned classifier using labeled source domain data in each feature space. The circles and squares 

indicate the different classes; the colors indicate the label information. The unlabeled target domain is 

expressed as a gray color. 
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In order to overcome those problems and improve target diagnosis performance, 

unsupervised domain adaptation (UDA) based fault diagnosis methods, which have 

the ability to convey the knowledge or information gained from the labeled source 

data into the unlabeled target domain, have been widely studied [70], [71]. The main 

concept of UDA is to learn common features that can be shared in both domains; this 

is accomplished by decreasing the domain discrepancy across these two different but 

related domains. This concept is presented in Figure 5-3 (b). Based on these shared 

representations, the classifier that was trained using the source data with label 

information is possible to be adopted in diagnosing the unlabeled target domain. 

Several types of UDA approaches that are built using deep neural networks were 

previously studied for fault diagnosis, including discrepancy-based methods [68] and 

adversarial adaptation methods [72]. However, most of the previous UDA methods 

focus only on minimizing discrepancy across the marginal distributions of two 

different domains. In this case, even though the marginal distributions may align 

well, the diagnosis performance for each class in the target domain may not be 

satisfactorily generalized [42], [45]. This is because the target samples from each 

class may not be clustered well, or may not be aligned well with the source data with 

the same class labels. As a result, the samples located near the boundary of each class 

might be easily misclassified. 

To address the aforementioned issues in UDA and enhance the diagnosis 

performances for target domain, the work outlined herein suggests a new domain 

adaptation with semantic clustering (DASC) method to diagnose faults of 

mechanical systems. By taking advantage of domain adaptation and metric learning 

concepts, the proposed method learns discriminative and domain-invariant features 
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that both minimize domain discrepancy and also make the samples from each class 

semantically well-clustered. To implement this strategy, an additional loss term 

called semantic clustering loss is proposed; this loss term brings samples that have 

the same class label closer and causes differently labeled samples to separate. This 

additional loss term is based on the pairwise distance metric between each labeled 

sample from the source domain; it is applied at multiple feature levels to obtain 

robust features with desired properties. In contrast with prior methods, our DASC 

approach can learn features with not only domain-invariant but also discriminative 

characteristics, which exhibit significant inter-class distances and minor intra-class 

distances, as depicted in Figure 5-3 (c). Thus, the proposed approach is able to 

achieve robust and well-generalized diagnosis models that can yield high diagnosis 

performances for the target domain, using label information from the source domain.  

We validate the efficacy of the DASC approach via various analyses that 

examine experimental data from three bearing systems. The results indicate that the 

DASC approach significantly increases the generalized diagnosis performances for 

mechanical systems, as compared with prior approaches. Also, the results of 

visualization of the learned feature distributions confirm that the DASC method can 

obtain discriminative features with better clustering characteristics. The proposed 

method’s efficacy was also confirmed to a further degree through ablation studies; 

these studies show that better diagnosis performance can be obtained by applying 

the semantic clustering loss term at multiple feature levels. In addition, by defining 

an index that evaluates how well the target features are clustered semantically, we 

verified DASC’s ability to make target domain features well-clustered class-wise. 

These results confirm that the DASC approach can greatly increase the fault 
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diagnosis performance for target mechanical systems via transferring knowledge 

obtained from source mechanical systems and making learned features more 

discriminative. 

The remainder of this chapter is constructed as follows. Section 5.1 introduces 

the concept of unsupervised domain adaptation (UDA). Next, in Section 5.2 CNN-

based diagnosis model is described. Then, in Section 5.3 explain the learning scheme 

of domain-invariant features. The newly devised semantic clustering loss based 

learning is presented in Section 5.4. Section 5.5 outlines the proposed DASC based 

fault diagnosis method. Then, Section 5.6 describes the results of experiments and 

analysis of these results. Lastly, conclusions of this research are discussed in Section 

5.7. 

 

5.1 Unsupervised Domain Adaptation 

For real-world mechanical systems, it can be expensive and not easy to secure 

a sufficient amount of labeled data. Also, in many cases, the test data distribution 

differs from that of the data used for training due to noise, changes in operating 

conditions, or other factors (e.g., when data is obtained from different systems). In 

order to develop fault diagnosis methods under these conditions, transfer learning 

can be utilized [35]. For a clear explanation of transfer learning, notation and 

definitions are presented here. First, a domain 𝐷  is comprised of marginal 

probability 𝑃(𝑋) and the feature space 𝒳, where 𝑋 ∈ 𝒳 denotes input datasets. 

Task 𝒯 is composed of predictive function 𝑃(𝑌|X) and label space 𝒴, where 𝑌 ∈
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𝒴 = {1,… , 𝑐} signify the health condition and 𝑐 represents the number of possible 

conditions. Transfer learning refers to the learning strategy that uses knowledge or 

information acquired from a different (but related) source domain 𝐷𝑆 to result in a 

diagnosis model that is applicable to target domain 𝐷𝑇, which is 𝑃(𝑌𝑇|XT). 

In the paper, we concentrate on the situations where labeled data acquired from 

𝐷𝑆 is used to improve target diagnosis performance in 𝐷𝑇, where label information 

cannot be obtained. In other words, the diagnosis models for the target domain, 

which has only unlabeled data {𝑋𝑇} = {𝑥𝑇,𝑖}𝑖=1

𝑛𝑇
, will be developed by transferring 

information from the labeled data {XS, 𝑌𝑇} = {𝑥𝑆,𝑖 , 𝑦𝑆,𝑖}𝑖=1

𝑛𝑆
 obtained from different 

(but related) source domains, where 𝑛𝑆 signifies the number of source samples and 

𝑛𝑇 describes the number of target samples. Different domains can be thought of as 

data obtained from different systems or under different operating conditions; for 

those different domains, there exist domain discrepancies or domain shifts (i.e., 

𝐷𝑆 ≠ 𝐷𝑇). In the problems dealt with in this section, both domains have the same 

label space 𝒴 (= 𝒴S = 𝒴T); this means that they have the same types of health 

conditions. This is reasonable because data from similar mechanical systems that has 

the same types of fault modes is transferred and utilized. These kinds of transfer 

learning problems are called unsupervised domain adaptation (UDA) problems [70], 

[71]. Due to domain discrepancies, we cannot apply the diagnosis models trained 

with labeled datasets obtained from 𝐷𝑆 directly to 𝐷𝑇. To solve those problems, 

UDA algorithms can be utilized to minimize domain discrepancies and to maximize 

the generalization performance in 𝐷𝑇. The primary goal is to determine common 

representations of features that can be shared in both domains by minimizing the 

discrepancy between them. Then, based on those shared features, we can develop 
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models for fault diagnosis that work well in both domains, using the label 

information from 𝐷𝑆 . This learning strategy can be confirmed by the following 

formula from [34]: 

𝑅𝐷𝑇
(𝜂) ≤ 𝑅𝐷𝑆

(𝜂) + 𝑑̂ℋ(𝐷𝑆 , 𝐷𝑇) + 𝐶𝑜𝑛𝑠𝑡.   (5.1) 

where 𝜂  denotes the trained classifier that belongs to the hypothesis class ℋ ; 

𝑅𝐷𝑇
(𝜂) denotes the target risk with classifier 𝜂 in 𝐷𝑇, which can be expressed as 

Pr
𝑋𝑇~𝐷𝑇

(𝜂(𝑋𝑇) ≠ 𝑌𝑇); 𝑅𝐷𝑆
(𝜂) denotes the source risk with 𝜂 in 𝐷𝑆; 𝑑̂ℋ(𝐷𝑆, 𝐷𝑇) 

denotes the empirical ℋ-divergence across the samples derived from 𝐷𝑆 and 𝐷𝑇, 

which implies the domain discrepancy; and 𝐶𝑜𝑛𝑠𝑡.  denotes a constant term 

determined by model complexity and sample size. As can be seen from Equation 

(5.1), to determine diagnosis models that work well for the target domain, both 

source risk and domain discrepancy should be minimized at the same time.  

There are several types of neural-network-based UDA methods that can be 

employed, depending on the learning strategy. First, discrepancy-based methods 

adopt specific metrics, including both Correlation Alignment (CORAL) and 

Maximum Mean Discrepancy (MMD) [73], [74]. These metrics quantify the 

discrepancy across the target and source domains. Then, by reducing those 

discrepancy metrics, domain-invariant features can be obtained. Yang et al. [68] used 

the MMD-based UDA method to acquire transferable features that could be 

employed for both bearings examined in the lab and bearings in locomotives. Second, 

adversarial adaptation approaches gain common features based on adversarial 

training schemes, in which the domain classifier and the feature extractor are in 

competition with each other [75]. Han et al. [72] proposed deep adversarial CNN, 
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which is a minimax-objective-based adversarial adaptation method, to diagnose 

gearbox and wind turbine faults. Furthermore, Guo et al. [69] obtained shared feature 

representations for bearing diagnosis by proposing a deep convolutional transfer 

learning network (DCTLN); This approach adopted adversarial and discrepancy-

based strategies simultaneously. 

 

5.2 CNN-based Diagnosis Model 

The general goal of the diagnosis technique is to gain a good fault diagnosis 

model that correctly matches input data 𝑋 to corresponding label vector 𝑌. To 

develop a diagnosis model, we conduct supervised learning to minimize the 

classification loss, or error between predicted and true labels of the labeled training 

data. In our paper, CNN is adopted to acquire an intelligent method to diagnose faults 

in mechanical systems. As explained in Chapter 2.1.2, CNN consists of a feature 

extractor part, which is built upon sets of convolutional layers and pooling layers, 

and a classifier part, which is based on fully connected layers. Through the feature 

extractor and classifier, input data 𝑋 is transformed into output vector 𝑌̂, as follows: 

𝑌̂ = 𝑓𝜃𝑐
[𝑓𝜃𝑓

(𝑋)] (5.2) 

where 𝜃𝑓 and 𝜃𝑐 denote the parameters within the feature extractor and classifier, 

respectively; 𝑓𝜃𝑓
 and 𝑓𝜃𝑐

 denote the transformation function through the feature 

extractor and classifier. For multi-class diagnosis models, the dimension of 𝑌̂, which 

represents the number of nodes in the output layer, should be the same as the quantity 

of health states to be diagnosed. Then, a softmax function is adopted to output the 
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probability vector 𝑝, as follows: 

𝑝(𝑌̂) =

[
 
 
 
 
𝑝1

⋮
𝑝𝑗

⋮
𝑝𝐶]

 
 
 
 

=
1

∑ exp(𝑌̂𝑘)𝐶
𝑘=1

[
 
 
 
 
 
exp(𝑌̂1)

⋮
exp(𝑌̂𝑗)

⋮
exp(𝑌̂𝐶)]

 
 
 
 
 

 (5.3) 

where 𝐶 denotes the number of health conditions of the target rotating machinery; 

and 𝑝𝑗  and 𝑌̂𝑗  signify the values of the 𝑗𝑡ℎ  node for vector 𝑝  and 𝑌̂ , 

respectively. The 𝑝𝑗  value can be interpreted as the probability that the 

corresponding data 𝑋 belongs to each 𝑗𝑡ℎ health condition among the 𝐶 classes. 

The cross-entropy loss is adopted for estimating the classification loss (𝐿𝐶) to learn 

the diagnosis model, and this can be represented as follows: 

𝐿𝐶 = − ∑ 𝑌𝑘 𝑙𝑜𝑔(𝑝𝑘)

𝐶

𝑘=1

 (5.4) 

where 𝑌𝑘 represents the value of the 𝑘𝑡ℎ node of true target label 𝑌. By reducing 

the classification loss defined in this way, it is possible to develop a good diagnosis 

model that classifies the labeled source domain data well to the correct labels. 

 

5.3 Learning of Domain-invariant Features 

For solving UDA problems by transferring a classifier gained using source data 

to the target domain, domain-invariant representations are required. To learn the 

common features that can be shared across 𝐷𝑆  and 𝐷𝑇 , the discrepancy-based 

method is adopted. The strategy of this learning scheme is, first, to define a metric 
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that quantifies the difference between the two domains and then, to train the features 

in a way that minimizes that metric. Here, maximum mean discrepancy (MMD) is 

employed for estimating a discrepancy across distributions of different domains. 

This nonparametric measure can be determined as being the greatest difference in 

expectation values over functions in the universal reproducing kernel Hilbert space 

(RKHS) [76]. We can express this as: 

𝑀𝑀𝐷(𝑝𝑆, 𝑝𝑇, 𝐻) ≔ ⁡ 𝑠𝑢𝑝
𝑓∈𝐻

( 𝐸
𝑥𝑆~𝑝𝑆

[𝑓(𝑥𝑆)] − 𝐸
𝑥𝑇~𝑝𝑇

[𝑓(𝑥𝑇)]) (5.5) 

where 𝐻 denotes the universal RKHS; 𝑓 denotes the functions within the function 

class, which is the unit ball in 𝐻; and 𝑥𝑆 and 𝑥𝑇 denote the random variables from 

the probability distributions, 𝑝𝑆 and 𝑝𝑇. Substituting the population expectations 

with empirical expectations calculated for the samples, we can find an empirical 

estimate of MMD: 

𝑀𝑀𝐷̂(𝑋𝑆, 𝑋𝑇 , 𝐻) ≔⁡ 𝑠𝑢𝑝
𝑓∈𝐻

(
1

𝑛𝑆
∑𝑓(𝑥𝑆,𝑖)

𝑛𝑆

𝑖=1

−
1

𝑛𝑇
∑𝑓(𝑥𝑇,𝑖)

𝑛𝑇

𝑖=1

) (5.6) 

where 𝑋𝑆 = (𝑥𝑆,1, … , 𝑥𝑆,𝑛𝑆
) and 𝑋𝑇 = (𝑥𝑇,1, … , 𝑥𝑇,𝑛𝑇

) denote the samples drawn 

from distributions 𝑝S and 𝑝𝑇; 𝑛𝑆 and 𝑛𝑇 denote the number of samples 𝑋𝑆 and 

𝑋𝑇. Based on the kernel mean embedding in RKHS, empirical estimation of squared 

MMD can be obtained in terms of the kernel functions, as follows [76]: 
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𝑀𝑀𝐷2̂ (𝑋𝑆, 𝑋𝑇, 𝐻)

=
1

𝑛𝑆
2

∑ 𝑘(𝑥𝑆,𝑖 , 𝑥𝑆,𝑗)

𝑛𝑆

𝑖,𝑗=1

−
2

𝑛𝑆𝑛𝑇
∑ 𝑘(𝑥𝑆,𝑖 , 𝑥𝑇,𝑗)

𝑛𝑆 ,𝑛𝑇

𝑖,𝑗=1

+
1

𝑛𝑇
2

∑ 𝑘(𝑥𝑇,𝑖 , 𝑥𝑇,𝑗)

𝑛𝑇

𝑖,𝑗=1

 

(5.7) 

where 𝑘(𝑥, 𝑥′) ≔< 𝜙(𝑥), 𝜙(𝑥′) >𝐻 denotes the kernel function, which is defined 

as the inner product between feature mappings, 𝜙, from 𝒳 to 𝐻. In this research, 

the Gaussian kernels 𝑘(𝑥, 𝑥′) = exp (−
‖𝑥−𝑥′‖

2

2𝜎2 ), which are proven to be universal 

kernels [77], are used to calculate empirical MMD through Equation (5.7). MMD 

depends on the value of 𝜎2, as does the UDA result. In this research, we employed 

multi-kernel MMD, which leverages different kernels with different 𝜎2 values, to 

enhance the robustness and performance of the MMD-based UDA methods [78]. 

Finally, the domain-related loss (𝐿𝐷) between the two domains (source and target) 

can be obtained using this MMD metric. 𝐿𝐷 can be calculated as the MMD between 

outputs of the feature extractor part for data from both domains, correspondingly 

𝑓𝜃𝑓
(𝑋𝑆) and 𝑓𝜃𝑓

(𝑋𝑇). This domain-related loss is essential for learning domain-

invariant features to conduct UDA tasks. 

 

5.4 Domain Adaptation with Semantic Clustering 

Conventional UDA methods aim to discover features that are domain-invariant 

by reducing both classification loss and domain-related loss. However, these 
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conventional UDA methods only consider alignment across the marginal 

distributions for different domain data; they do not consider the separability of 

features according to their classes. Thus, discriminative features with significant 

inter-class differences and minor intra-class variations cannot be learned consistently; 

this results in low target domain generalization performance. To cope with this, we 

propose a metric-learning based approach to learn more discriminative 

representations that make samples from each class semantically well-clustered. This 

can be achieved by mapping the data from the same class closely together, while 

making the differently classed data sufficiently separate. For this purpose, we 

propose an additional loss term, called semantic clustering loss (𝐿𝑆𝐶), which can be 

expressed as follows: 

𝐿𝑆𝐶 = ∑ 𝜆𝑘 [ ∑ {‖𝑔𝑖
𝑘 − 𝑔𝑗

𝑘‖
2

2
∙ 𝐼𝑖𝑗 + 𝑚𝑎𝑥 (0,  𝑑 − ‖𝑔𝑖

𝑘 − 𝑔𝑗
𝑘‖

2
)
2

𝑛𝑠

𝑖,𝑗=1

𝑛𝑓

𝑘=1

∙ (1 − 𝐼𝑖𝑗)}  ] 

(5.8) 

𝑔𝑖
𝑘 represents the feature vector of the 𝑖𝑡ℎ source sample, 𝑥𝑆,𝑖, at the 𝑘𝑡ℎ feature 

level; 𝐼𝑖𝑗  denotes the value of the matrix 𝐼, which is 1 if the 𝑖𝑡ℎ and 𝑗𝑡ℎ samples 

are in the same class, and 0 for those that are in a different class; 𝑛𝑓 denotes the 

number of feature layers to which 𝐿𝑆𝐶  is applied; 𝜆𝑘  denotes the balancing 

parameter for 𝐿𝑆𝐶  at each 𝑘𝑡ℎ feature level, which is determined experimentally; 

𝑛𝑠 represents the quantity of source samples; and 𝑑 signifies the value that controls 

the minimum distance between two samples from dissimilar classes. Equation (5.8) 

shows that, 𝐿𝑆𝐶  is calculated based on the pairwise similarity distances between all 
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source samples to obtain robust and semantically well-clustered features. By 

reducing the 𝐿𝑆𝐶  during the training process, for sample pairs from the same class 

(𝐼𝑖𝑗 = 1), the pairwise distances will be reduced; for sample pairs from different 

classes ( 𝐼𝑖𝑗 = 0 ), the distances will be increased. This similarity-metric-based 

learning is performed using the source data because, under the UDA problem, only 

source-domain label information is available. Since the two domains are related, this 

learning strategy using semantic clustering loss for the source data will make target 

data also clustered well by each class. Furthermore, in our proposed method, the 𝐿𝑆𝐶  

is applied at multiple feature levels. As a result, more discriminative feature 

representations can be obtained, which make samples semantically clustered better 

according to their health conditions. Thanks to this semantic clustering characteristic, 

the misclassification rate for the target samples located near the boundary of each 

class is decreased. In conclusion, the diagnosis performance in 𝐷𝑇 can be improved 

through the use of our method. 

 

5.5 Proposed DASC-based Fault Diagnosis Method 

Through our proposed DASC-based fault diagnosis method for mechanical 

systems, we can acquire an accurate and robust diagnosis model for the target 

domain without any label information [79]. The data flow and architecture of DASC 

are provided in Figure 5-4. First, the feature extractor part is made up of two groups 

of convolutional and pooling layers. For every convolutional layer, 1D kernels with 

zero-padding and ReLU are adopted; for every pooling layer, max-pooling is used. 

Next, for the classifier part, a fully connected network, comprised of two layers with 
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dimensions of 256  and 𝐶 , is used, where 𝐶  describes the number of health 

conditions of the rotating machinery. The final objective function of DASC is 

expressed as: 

𝐿 = 𝐿𝐶 + 𝜆𝐷𝐿𝐷 + 𝜆𝑆𝐶𝐿𝑆𝐶  (5.9) 

where 𝐿𝐶 , 𝐿𝐷 , and 𝐿𝑆𝐶  denote the classification loss, domain-related loss, and 

semantic clustering loss, respectively; 𝜆𝐷  and 𝜆𝑆𝐶  denote the balancing 

parameters for 𝐿𝐷  and 𝐿𝑆𝐶 . Based on the labeled source data, 𝐿𝐶  is calculated 

only at the output layer of the classifier, according to Equation (5.4); also, 𝐿𝑆𝐶  is 

calculated at every pooling layer within the feature extractor, through the use of 

Equation (5.8). Based on Equation (5.7), 𝐿𝐷, which should be minimized to acquire 

features that are domain-invariant, is calculated as the MMD between the features 

from 𝐷𝑆 and 𝐷𝑇, which are found as the outcomes of the last convolutional and 

pooling layers, as can be seen in Figure 5-4. Through minimizing this final objective 

function, fault diagnosis models learned using label information of 𝐷𝑆  can be 

employed in 𝐷𝑇, and more discriminative features can be learned by making the 

features semantically well-clustered according to their classes. In addition, one thing 

to keep in mind is that although 𝐿𝐶  and 𝐿𝑆𝐶  both use the label information from 

source domain data, their purposes and benefits are different. 𝐿𝐶  only considers the 

location of the labeled data relative to the hyperplane of the classifier. That is, it aims 

to make the model correctly classify the source domain labeled data. However, 𝐿𝑆𝐶  

considers the labeled data’s distribution, the relative distances between samples 

according to their classes, which results in semantically better clustered features. As 

a result, based on the proposed DASC method, which considers not only 𝐿𝐷 and 

𝐿𝐶  but also 𝐿𝑆𝐶 , we can achieve fault diagnosis models with high target 
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generalization performances. In this paper, we employ the mini-batch gradient 

descent scheme with momentum to train the diagnosis model. Here, a learning rate 

is set as 
0.01

(1+10×𝑝)0.75, which decreases as training progress 𝑝 increases from 0 to 1 

[75]. As 𝜎2 values for calculating the multi-kernel MMD, powers of 10 between 

1e-6 and 1e6 are used. The balancing parameters 𝜆𝑘, 𝜆𝐷, and 𝜆𝑆𝐶 in Equations (5.8) 

and (5.9) were chosen within the range of 1e-5 to 1e-1. In addition, more detailed 

information on the parameters used in the proposed method is presented in Table 5-1. 

Table 5-1 Parameter information of the proposed method. 

Parameter Value Parameter Value 

Epoch 150 Kernel number 20 

Batch size 64 Kernel size 3 

momentum 0.9 Stride 1 

𝑛𝑓 2 Pooling window size 2 

d 100 Pooling stride 2 
 

 

A flowchart of our DASC-based method of fault diagnosis is shown in Figure 

5-5. As explained above, labeled source data is employed to obtain fault diagnosis 

models applicable in the different domain which is unlabeled. By minimizing the 

final objective function, discriminative domain-invariant representations can be 

secured. Thus, target domain fault diagnosis performance is improved.
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Figure 5-4 The architecture of the DASC-based diagnosis approach. 
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Figure 5-5 Flowchart of the proposed DASC-based fault diagnosis method. 
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5.6 Experimental Studies and Results 

5.6.1 Experiment and Data Description 

In this research, bearing data acquired from the systems displayed in Figure 5-6 

was used to validate the DASC method. First, we examine a ball-bearing data offered 

by the Bearing Data Center in Case Western Reserve University (CWRU) [80]. 

Second, a spherical roller-bearing dataset furnished by the Center for Intelligent 

Maintenance Systems (IMS) [81] was studied. Finally, a ball-bearing dataset offered 

by the Xi’an Jiaotong University, Institute of Design Science and Basic Component, 

and Changxing Sumyoung Technology Co., Ltd. (XJTU-SY) [82] was used. The 

acceleration signals were obtained from four types of health states: normal (N), ball 

fault (B), inner raceway fault (IR), and outer raceway fault (OR). For CWRU, faults 

with diameters 0.007, 0.014, and 0.021 inches were induced to the bearing through 

electric-discharge machining. For IMS and XJTU-SY, fault data was obtained by 

run-to-failure experiments. In addition, CWRU and XJTU-SY data were obtained 

under variable operating conditions. More detailed specifications of the datasets for 

each type of bearing studied are introduced in Table 5-2. 
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Figure 5-6 Experimental testbed: (a) CWRU testbed; (b) IMS testbed; and (c) XJTU-SY testbed. 
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Table 5-2 Detailed information about bearing datasets. 

Datasets Sampling rate (kHz) Rotating speed (RPM) Load Health conditions 

CWRU1 12 1797 0 (hp) N / B / IR / OR 

CWRU2 12 1772 1 (hp) N / B / IR / OR 

CWRU3 12 1750 2 (hp) N / B / IR / OR 

CWRU4 12 1730 3 (hp) N / B / IR / OR 

IMS 20 2000 26.6 (kN) N / B / IR / OR 

XJTU-SY1 25.6 2100 12 (kN) N / IR / OR 

XJTU-SY2 25.6 2250 11 (kN) N / IR / OR 

XJTU-SY3 25.6 2400 10 (kN) N / B / IR / OR 
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Two UDA-based fault diagnosis scenarios were considered to demonstrate 

DASC’s effectiveness. First, the UDA problems between domains with 

discrepancies caused by different operating conditions are considered in Section 

5.6.3. The second scenario describes the development of diagnosis models when 

source data and target data are collected from distinct mechanical systems; this is 

explained in Section 5.6.4. For all experiments, the dataset for each health condition 

consists of 4000 samples of raw vibration signals whose length is 1200 points. 

Among them, 70% of data samples were dedicated to training; 30% were assigned 

for use in the test step to estimate the diagnosis performances. Training data from 

both domains were used to learn the UDA-based fault diagnosis models. Target test 

samples were used to assess the target domain generalization performance of these 

UDA-based diagnosis models. 

 

5.6.2 Compared Methods 

Target domain diagnosis performances of both DASC and existing methods 

were examined to validate DASC’s effectiveness. First, a CNN trained using source 

data only was compared for verification of the effectiveness of UDA algorithms. 

Then, several existing neural-network-based UDA algorithms used for fault 

diagnosis were compared. Domain-adversarial neural network (DANN) [75] was 

used as a representative method of an adversarial adaptation approach. For a 

discrepancy-based method, Deep CORAL [74], which learns the desirable features 

by reducing the difference between covariances of features in two domains, was 

compared. Also, the method to minimize the multi-kernel MMD across source 

features and target features was compared. The method that uses both adversarial 
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and discrepancy-based strategies simultaneously was also compared; this method is 

abbreviated as Adv+Disc in the remaining parts. In order to fairly and effectively 

compare the generalization ability by relying solely on the UDA method used, the 

same CNN architecture described in Section 5.5 was adopted as the backbone model 

for all compared methods. Furthermore, the domain classifier for the adversarial 

adaptation strategy consists of a two-layer, fully connected network with 256 and 2 

nodes. The balancing parameter for DANN was chosen from {0,0.5,1.0,1.5,2.0}, and 

for MMD, the parameter was chosen within the range of 1e-5 to 1e-1. For the method 

using both adversarial and discrepancy-based strategies simultaneously, the same 

parameters as used for DANN and MMD were employed, and for Deep CORAL, the 

parameter was selected within the range of 1e-6 to 1e-2. In addition, for fair 

comparisons, all compared UDA methods were performed under the same conditions, 

by using not only the same training and test data but also by using the same 

implementation details, such as optimizer, learning rate, training epoch, batch size, 

and momentum. Also, testing of each method was accomplished on the same 

computer, which was equipped with an NVIDIA GeForce RTX 2080 Ti, Intel i7-

8700, and 16 GB of RAM. 

 

5.6.3 Scenario I: Different Operating Conditions 

The experimental results of UDA between domains with various operating 

conditions, (e.g., load and rotational speed) are described in this section. For 

performance verification of DASC under different operating conditions, the CWRU 

and XJTU-SY datasets, in which vibration signals were obtained under variable 

operating conditions as explained in Table 5-2, are used. First, for the CWRU dataset, 
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we evaluated the proposed and compared methods across all twelve UDA tasks with 

different source and target domains, which are 1 → 2/3/4 , 2 → 1/3/4 , 3 →

1/2/4, and 4 → 1/2/3, where each number indicates the dataset with different 

operating condition presented in Table 5-2. In these experiments, to focus on the 

discrepancies caused by different operating conditions, the variances due to the fault 

sizes within each health condition were ignored; this means that samples from the 

same health condition with different fault sizes were grouped into the same 

classification category. For these datasets, there are four types of health conditions 

(N, B, IR, OR); therefore, 𝐶 is set as 4. The diagnosis accuracies for the target 

samples under differing conditions of operation, using the dataset provided by 

CWRU, are presented in Figure 5-7. The values in the figure show the mean accuracy 

values for three different target tasks with the same source domain; the error bars 

display the standard error values. Compared with other methods, DASC (our new 

approach) attains the best diagnosis performance accuracy in all tasks. It is important 

to note that there are a few cases in which high performance is achieved even if only 

the source data was used. However, even in these cases, the proposed method always 

improved the target diagnosis performance consistently, unlike alternative 

approaches. In general, the DASC approach showed superior performances across 

all situations. To effectively confirm the generalization capability of DASC, detailed 

diagnosis performance results for all twelve UDA tasks with different source 

domains and target domains are presented in Table 5-3. 
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Figure 5-7 Target diagnosis results for scenario I with the CWRU dataset. Mean 

accuracy values for tasks (a) 1→2/3/4; (b) 2→1/3/4; (c) 3→1/2/4; and (d) 4→1/2/3. 
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Table 5-3 Average diagnosis accuracy (%) for scenario I with the CWRU datasets. 

Source → 𝐓𝐚𝐫𝐠𝐞𝐭 CNN DANN MMD Adv+Disc Deep CORAL Proposed 

1 → 2 97.5 ± 0.15 96.9 ± 0.41 98.5 ± 0.19 95.8 ± 0.52 95.3 ± 0.16 𝟗𝟗.𝟑 ± 𝟎. 𝟎𝟔 

1 → 3 89.2 ± 0.53 94.8 ± 0.50 89.3 ± 1.10 93.7 ± 0.88 90.3 ± 0.49 𝟗𝟔.𝟐 ± 𝟎. 𝟗𝟗 

1 → 4 72.9 ± 0.99 89.9 ± 0.46 77.3 ± 3.06 88.7 ± 3.47 85.9 ± 0.48 𝟗𝟏.𝟗 ± 𝟎. 𝟑𝟗 

2 → 1 98.8 ± 0.11 97.9 ± 0.64 98.5 ± 0.10 96.5 ± 0.60 98.2 ± 0.35 𝟗𝟗.𝟓 ± 𝟎. 𝟏𝟗 

2 → 3 98.1 ± 0.21 96.7 ± 0.11 97.6 ± 0.16 96.3 ± 0.77 99.4 ± 0.14 𝟗𝟗.𝟖 ± 𝟎. 𝟎𝟏 

2 → 4 93.8 ± 0.08 90.8 ± 1.21 89.2 ± 1.91 92.5 ± 0.49 92.4 ± 0.66 𝟗𝟔.𝟖 ± 𝟎. 𝟒𝟓 

3 → 1 97.5 ± 0.31 96.1 ± 0.27 97.6 ± 0.24 94.8 ± 0.44 97.3 ± 0.11 𝟗𝟗.𝟏 ± 𝟎. 𝟏𝟑 

3 → 2 99.0 ± 0.08 97.5 ± 0.55 99.5 ± 0.04 96.7 ± 0.98 99.6 ± 0.03 𝟗𝟗.𝟕 ± 𝟎. 𝟎𝟐 

3 → 4 97.8 ± 0.29 98.1 ± 0.34 97.2 ± 0.16 97.4 ± 0.52 98.3 ± 0.11 𝟗𝟗.𝟑 ± 𝟎. 𝟎𝟑 

4 → 1 93.0 ± 0.26 94.3 ± 1.23 94.4 ± 0.56 95.1 ± 1.07 93.3 ± 0.10 𝟗𝟔.𝟗 ± 𝟎. 𝟐𝟓 

4 → 2 93.5 ± 0.53 95.1 ± 0.91 97.2 ± 0.08 94.4 ± 0.23 93.1 ± 0.45 𝟗𝟖.𝟗 ± 𝟎. 𝟏𝟎 

4 → 3 95.8 ± 0.48 97.7 ± 0.33 98.2 ± 0.05 97.4 ± 0.18 96.2 ± 0.29 𝟗𝟗.𝟗 ± 𝟎. 𝟎𝟐 

Average 93.9 95.5 94.6 94.9 95.0 𝟗𝟖.𝟏 
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Next, we evaluated diagnosis performance of different UDA methods using the 

XJTU-SY dataset. For this dataset, there are six available tasks, including 1 → 2/3, 

2 → 1/3, and 3 → 1/2. For these tasks, 𝐶 is set as 3, since there are only three 

kinds of health conditions (i.e., N, IR, and OR) available in the XJTU-SY1 and 2 

datasets, as shown in Table 5-2. The target diagnosis performances under different 

operating conditions for XJTU-SY are displayed in Figure 5-8. The accuracy values 

in the figure represent the average values for two different tasks with the same source 

domain; the error bars display standard error values. In examining the XJTU-SY 

dataset, as well, DASC – which adopts the semantic clustering loss term – 

consistently improved the target diagnosis performances. Detailed diagnosis results 

for all six UDA tasks are shown in Table 5-4. As seen in the results, for most cases, 

DASC leads to the best performances among the several UDA methods studied. 
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Figure 5-8 Target diagnosis results for scenario I with the XJTU-SY dataset. Mean accuracy values for tasks (a) 1→2/3; (b) 

2→1/3; and (c) 3→1/2. 
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Table 5-4 Average diagnosis accuracy (%) for scenario I with the XJTU-SY datasets. 

Source → 𝐓𝐚𝐫𝐠𝐞𝐭 CNN DANN MMD Adv+Disc Deep CORAL Proposed 

1 → 2 94.7 ± 0.02 96.5 ± 0.15 96.3 ± 0.17 95.3 ± 0.80 96.2 ± 0.02 𝟗𝟔.𝟔 ± 𝟎. 𝟎𝟕 

1 → 3 78.2 ± 0.25 88.3 ± 0.82 78.7 ± 2.36 87.7 ± 1.40 89.3 ± 0.02 𝟗𝟎.𝟔 ± 𝟎. 𝟔𝟕 

2 → 1 63.8 ± 0.19 56.8 ± 8.11 70.7 ± 0.81 74.5 ± 7.23 67.3 ± 0.39 𝟖𝟏.𝟔 ± 𝟐. 𝟎𝟒 

2 → 3 89.7 ± 0.12 𝟗𝟏.𝟖 ± 𝟎. 𝟓𝟔 90.8 ± 0.06 91.6 ± 0.44 91.4 ± 0.03 91.1 ± 0.15 

3 → 1 53.4 ± 0.09 46.2 ± 1.16 51.5 ± 0.50 45.5 ± 1.32 55.9 ± 0.25 𝟔𝟏.𝟔 ± 𝟎. 𝟕𝟔 

3 → 2 95.7 ± 0.09 96.6 ± 0.47 96.2 ± 0.20 96.7 ± 0.33 96.2 ± 0.25 𝟗𝟔.𝟕 ± 𝟎. 𝟐𝟒 

Average 79.2 79.5 80.7 81.9 82.7 𝟖𝟔.𝟑 
 



125 

 

 

5.6.4 Scenario II: Different Rotating Machinery 

This section describes the results of UDA tasks between domains obtained from 

different rotating machinery. First, the UDA tasks between the CWRU and IMS 

datasets were considered. Each dataset has four health conditions; therefore, 𝐶 

needs to be 4. To confirm the generalization performance and robustness of DASC 

thoroughly, validations were conducted on all UDA tasks between CWRU data 

obtained from four operational states (see Table 5-2) and IMS data. Therefore, we 

evaluated all methods across 8 UDA tasks, as can be seen in Table 5-5. Since the 

IMS fault dataset was obtained under run-to-failure experiments, CWRU data with 

the smallest fault size was considered for those tasks. Thorough results are provided 

in Table 5-5; average diagnosis performances for CWRU → IMS tasks and IMS →

CWRU tasks can be seen in Figure 5-9. The values in the table represent the mean 

accuracy, as well as the standard error values of ten trials for each task; Figure 5-9 

also shows mean and standard error values of diagnosis performances for each 

CWRU → IMS and IMS → CWRU task. In most cases, it was confirmed that – by 

utilizing UDA methods – the target diagnosis performances are enhanced over those 

achieved by a CNN model trained only with source data. In addition, DASC provides 

better performance than existing methods, for all cases.
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Table 5-5 Average diagnosis accuracy (%) for scenario II between the CWRU and IMS datasets. 

Source → 𝐓𝐚𝐫𝐠𝐞𝐭 CNN DANN MMD Adv+Disc Deep CORAL Proposed 

CWRU1 → IMS 72.9 ± 1.75 81.7 ± 0.85 86.5 ± 0.02 82.6 ± 1.27 84.3 ± 0.01 𝟗𝟎.𝟏 ± 𝟎. 𝟎𝟑 

CWRU2 → IMS 76.6 ± 0.00 81.5 ± 1.41 86.0 ± 0.03 84.9 ± 1.16 85.3 ± 0.26 𝟖𝟗.𝟔 ± 𝟎. 𝟎𝟎 

CWRU3 → IMS 78.0 ± 0.41 79.6 ± 2.03 87.2 ± 0.44 82.2 ± 1.78 86.4 ± 0.30 𝟖𝟗.𝟏 ± 𝟎. 𝟎𝟓 

CWRU4 → IMS 73.4 ± 0.00 74.3 ± 2.77 86.6 ± 0.00 72.3 ± 3.43 83.7 ± 0.08 𝟗𝟎.𝟏 ± 𝟎. 𝟎𝟗 

Average 75.2 79.3 86.5 80.5 84.9 𝟖𝟗.𝟕 

IMS → CWRU1 47.2 ± 0.92 56.4 ± 3.06 66.4 ± 2.77 59.0 ± 2.42 60.4 ± 3.13 𝟕𝟑.𝟓 ± 𝟎. 𝟏𝟖 

IMS → CWRU2 49.2 ± 0.08 56.8 ± 3.20 68.1 ± 2.41 55.9 ± 1.97 55.8 ± 2.75 𝟕𝟐.𝟓 ± 𝟎. 𝟗𝟎 

IMS → CWRU3 50.1 ± 0.14 54.3 ± 2.04 64.5 ± 2.60 58.4 ± 2.57 49.2 ± 1.47 𝟕𝟎.𝟑 ± 𝟏. 𝟎𝟏 

IMS → CWRU4 50.1 ± 0.00 57.1 ± 2.75 72.0 ± 0.98 57.9 ± 2.28 50.5 ± 0.12 𝟕𝟒.𝟕 ± 𝟎. 𝟔𝟓 

Average 49.1 56.2 67.8 57.8 54.0 𝟕𝟐.𝟖 
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Figure 5-9 Target diagnosis results for scenario II between the CWRU and IMS datasets. Mean accuracy 

values for tasks (a) CWRU→IMS; (b) IMS→CWRU. 
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Next, the UDA tasks between two different datasets obtained through the run-

to-failure experiments, which are IMS and XJTU-SY, were considered. In this case, 

to match the number of health conditions 𝐶 between the two datasets, XJTU-SY3, 

which has four fault types (the same as the IMS data) was used. The target diagnosis 

results between the IMS and XJTU-SY datasets are presented in Figure 5-10. The 

average and standard error values for ten trials are shown in this figure. As seen in 

the prior cases, these outcomes confirm that DASC, proposed herein, shows the best 

performance among the many UDA methods. Detailed diagnosis results can be 

found in Table 5-6. 
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Figure 5-10 Target diagnosis results for scenario II between the IMS and XJTU-SY datasets. Mean accuracy 

values for tasks (a) XJTU‐SY→IMS; (b) IMS→XJTU‐SY. 
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Table 5-6 Average diagnosis accuracy (%) for scenario II between the XJTU-SY and IMS datasets. 

Source → 𝐓𝐚𝐫𝐠𝐞𝐭 CNN DANN MMD Adv+Disc Deep CORAL Proposed 

XJTU‐ SY → IMS 38.6 ± 0.43 48.0 ± 2.38 57.6 ± 0.21 46.8 ± 2.95 46.5 ± 1.16 𝟔𝟖.𝟗 ± 𝟎. 𝟑𝟑 

IMS → XJTU‐ SY 50.0 ± 0.17 50.3 ± 2.12 47.3 ± 0.64 50.5 ± 2.63 48.0 ± 1.95 𝟓𝟕.𝟎 ± 𝟏. 𝟖𝟓 

Average 44.3 49.2 52.5 48.7 47.3 𝟔𝟎.𝟔 
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5.6.5 Analysis and Discussion 

Through many of the UDA tasks described in the two prior sections, it was 

confirmed that – when domains are different – diagnosis performance for mechanical 

systems can be improved by using UDA methods. Also, it was shown that, in all 

cases, the proposed DASC method outperforms other UDA methods thanks to 

adopting the additional loss term called semantic clustering loss and reducing it at 

multiple feature levels. This is the result of semantically well-clustered, 

discriminative features whose inter-class distance is large enough, and 

simultaneously, whose intra-class distance is minor, learned by DASC. To improve 

understanding and demonstrate the efficacy of DASC, additional analyses are 

explored and described below. 

First, the efficacy of DASC can be confirmed through the visualization of the 

learned feature distributions. In this paper, learned feature distributions are 

visualized using the t-distributed Stochastic Neighboring Embedding (t-SNE) 

method [63]. Figure 5-11 shows the visualization results for task CWRU1 →

CWRU3 of scenario I. This figure shows that the feature distribution obtained by 

DASC best separates data by class. This is because the DASC method learned the 

most discriminative features by adopting semantic clustering loss. As a result, it can 

be seen that the overlap between different classes is the least and that the same 

classes are well-clustered.
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Figure 5-11 Feature visualization results using t-SNE for scenario I with the 

CWRU dataset: (a) CNN; (b) DANN; (c) MMD; (d) Adv+Disc; (e) Deep CORAL; 

and (f) DASC. 
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The visualization results for the CWRU1 → IMS task of scenario II are shown 

in Figure 5-12. As shown in Figure 5-12 (a), for a CNN that only used the source 

data, since it does not consider the relationship with the target data, the domain 

discrepancy is large. On the other hand, by using UDA methods, the discrepancy 

between 𝐷𝑆  and 𝐷𝑇  is reduced to learn domain-invariant features that can be 

shared in both domains, as displayed in Figure 5-12 (b)-(f). For DASC, both 

discriminative and domain-invariant representations can be obtained through 

learning semantically well-clustered features according to their health conditions. 

Thus, the learned features have the characteristics of significant inter-class variations 

and minor intra-class variations. Consequently, based on those well-learned robust 

features, the best generalization performances in the target domain can be obtained. 
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Figure 5-12 Feature visualization results using t-SNE for scenario II, 

CWRU→IMS task: (a) CNN; (b) DANN; (c) MMD; (d) Adv+Disc; (e) Deep 

CORAL; and (f) DASC. 
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Next, the effectiveness of our method was verified through an ablation study. 

In this section, for the ablation study, four different methods were compared: (1) 

CNN using classification loss only; (2) UDA using domain-related loss; (3) Last_SC 

using semantic clustering loss only at the last layer of the feature extractor; and (4) 

our proposed DASC method. The diagnosis accuracy results for all tasks of scenario 

I and scenario II are shown in Figure 5-13. As shown in this figure, by employing 

domain-related loss, the diagnosis performance in the target domain can be improved, 

as compared to the CNN models that are trained with only source domain data. In 

addition, by considering the semantic clustering loss term, which makes the samples 

from each class semantically well-clustered, the diagnosis performance can be 

further improved. Lastly, the highest performances were consistently obtained by 

applying the semantic clustering loss at multiple feature levels.  
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Figure 5-13 Average diagnosis accuracy (%) of each method, as found by the ablation study. 
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Furthermore, to evaluate how well the target features are clustered semantically, 

which is the property that we purpose to achieve by using the proposed method, an 

index called the semantic clustering index (SCI) is defined. The SCI is defined as the 

ratio between averaged inter-class distances and averaged intra-class distances for 

target data, which is expressed as:  

𝑆𝐶𝐼 =
2

(𝐶 − 1)
∙

∑ ‖cent𝑙1 − cent𝑙2‖2
𝐶
𝑙1,𝑙2=1

∑
1
𝑛𝑙

∑ ‖𝑓𝜃𝑓
(𝑥𝑖) − cent𝑙‖

2

𝑛𝑙
𝑖=1

𝐶
𝑙=1

 (5.10) 

where 𝐶 represents the number of health conditions studied for the target rotating 

machinery; 𝑛𝑙 represents the number of samples with health condition 𝑙; 𝑓𝜃𝑓
(𝑥𝑖) 

denotes the feature vector of sample 𝑥𝑖 extracted by a feature extractor; and cent𝑙 

signifies the center of samples with label 𝑙 in the extracted feature space. A larger 

SCI value means that the target samples are semantically better clustered according 

to their classes. In other words, it means that the target sample features have smaller 

within-class variations and bigger between-class distances. Therefore, we expect that 

a UDA method that has a large SCI value will have high target generalization 

performances, especially for data located near the boundary of each class. 

The SCI values of all compared UDA methods for UDA tasks of the scenario I 

and II are presented in Table 5-7, and the averaged SCI values are displayed in Figure 

5-14. The figure shows that DASC consistently has the largest SCI values among the 

compared UDA methods, for every task in both scenarios. This means that the 

features learned by this method have the most discriminative distributions. This is 

because the DASC method learns semantically well-clustered features by applying 

an additional semantic clustering loss term at multiple feature levels; these results 
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explain well why our method shows the highest generalization performances in the 

target domain. From these results, which analyze SCI values, we can confirm that 

semantic clustering loss, based on source domain labeled data only, can enhance the 

class-wise clustering performance of different, but related, target domain data. Thus, 

the proposed approach leads to improved target domain generalization performance. 

 

 

Figure 5-14 Averaged semantic clustering index (SCI) values. 
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Table 5-7  Semantic clustering index (SCI) for all UDA tasks of scenario I and II. 

SCI DANN MMD Adv+Disc Deep CORAL Proposed 

CWRU 1.069 1.455 0.923 1.683 𝟏. 𝟕𝟎𝟐 
XJTU‐ SY 0.944 1.379 1.137 1.620 𝟏. 𝟕𝟎𝟔 

CWRU → IMS 1.173 2.160 2.219 2.758 𝟑. 𝟐𝟕𝟕 
IMS → CWRU 0.519 1.899 1.734 1.794 𝟏. 𝟗𝟕𝟎 

XJTU‐ SY → IMS 1.281 1.897 0.992 1.788 𝟐. 𝟐𝟑𝟑 
IMS → XJTU‐ SY 1.721 1.373 0.760 1.766 𝟑. 𝟓𝟐𝟎 

Average 1.118 1.694 1.294 1.902 𝟐. 𝟒𝟎𝟏 
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Finally, as shown in Table 5-3 to Table 5-6, DASC shows the smallest 

performance variances in most tasks, which means that it can provide the most stable 

and robust diagnosis performances for target domain data. Through the results of 

these various analyses provided in this section, we can confirm that DASC, proposed 

herein, offers the most accurate and robust UDA-based diagnosis models for 

mechanical systems, in settings where it is problematic to acquire label information. 

5.7 Summary and Discussion 

In the research outlined in this chapter, an advanced UDA approach, domain 

adaptation with semantic clustering (DASC), for diagnosis of mechanical systems is 

offered. Our approach pursues to learn discriminative and domain-invariant 

representations to improve generalization performance in the 𝐷𝑇 using information 

from 𝐷𝑆 . The effectiveness of DASC is verified based on two UDA-based fault 

diagnosis scenarios using experimental bearing data. Results show that, in most tasks, 

DASC offers better target diagnosis accuracy performances than any other 

approaches, by applying semantic clustering loss at multiple feature levels. In 

addition, through visualization of learned features and an ablation study, this 

research demonstrates the superiorities of the proposed DASC method. Furthermore, 

by defining a new index called SCI, it is possible to confirm the superior 

characteristics of the learned features by the DASC approach.  

 

Sections of this chapter have been published or submitted as the following journal 
articles:  

1)  Myungyon Kim, Jin Uk Ko, Jinwook Lee, Byeng D. Youn, Joon Ha Jung, and Kyung 

Ho Sun, “A Domain Adaptation with Semantic Clustering (DASC) Method for Fault 

Diagnosis of Rotating Machinery,” ISA Transactions, 2021. 
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Chapter 6 Conclusion 

 

Conclusion 

 

6.1 Contributions and Significance  

The proposed research in this doctoral dissertation aims at developing the 

methods to maximize the use of information for deep learning based fault diagnosis 

techniques. This doctoral dissertation is composed of three research: (1) a direct 

connection based convolutional neural network which enhances the gradient 

information flow; (2) a robust and discriminative feature learning method for fault 

diagnosis by transferring the pre-trained model and making the features better 

separated by their classes; and (3) a domain adaptation method based on the semantic 

clustering loss for learning more discriminative domain-invariant features. It is 

expected that the proposed research offers the following potential contributions and 

broader impacts in the fields related to fault diagnosis techniques. 

 

Contribution 1: Suggestion of an advanced CNN-based architecture to 

improve the gradient information flow within the deep 

learning model 
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This doctoral dissertation proposes a direct connection based CNN (DC-CNN) 

architecture to greatly increase the training efficiency and diagnosis performance. 

Based on the directly connected convolutional module, the gradient information flow 

can be maximized. As a result, the diagnosis models based on the deeper network 

architecture can be trained well. In addition, the training efficiency can be also 

enhanced by adopting the dimension reduction module. Consequently, this DC-CNN 

architecture enables learning of enriched and superior features based on the enhanced 

information flow, which results in higher and more stable diagnosis performances. 

 

Contribution 2: Suggestion of a method to learn well-generalized diagnosis 

models even under insufficient and noisy data conditions 

This doctoral dissertation proposes a robust and discriminative feature learning 

method to improve the diagnosis performances even under insufficient and noisy 

data conditions. Effective and robust feature learning is possible through the pre-

trained model learned from the source domain with abundant data. In addition, by 

additionally utilizing the triplet loss during the model training process, a 

semantically well-separable and discriminative feature can be learned. Through the 

use of the pre-trained model, information obtained from abundant data in the source 

domain is transferred and maximally utilized. Also, the distribution of samples by 

their classes was considered. As a result, by taking advantage of transfer learning 

and metric learning concepts, an effective diagnosis model can be learned. 

 



143 

 

 

Contribution 3:  Suggestion of a diagnosis method which provides high 

generalized performance for unlabeled target domain data 

This doctoral dissertation proposes a novel domain adaptation based fault 

diagnosis technique to improve the diagnosis performance for the unlabeled target 

domain by maximally using the label information obtain from the source domain. 

By minimizing the domain discrepancy metric, domain-invariant features are 

obtained. In addition, by applying newly devised semantic clustering loss at multiple 

feature levels, semantically well-clustered features can be secured. As a result, more 

discriminative domain-invariant features can be learned based on the proposed 

method. Furthermore, the new metric for evaluating how well the features clustered 

semantically was suggested. In conclusion, based on the proposed DASC method, 

we can enhance the fault diagnosis performance for the target domain by transferring 

the label information obtained from the source domain. 

 

6.2 Suggestions for Future Research 

Although the technical advances proposed in this doctoral dissertation 

successfully address some issues in the field of deep learning based fault diagnosis 

techniques, there are still several research topics that further investigations and 

developments are required to enhance the fault diagnosis performance more. Specific 

suggestions for future research are listed as follows. 
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Suggestion 1: Physics-informed artificial intelligence (Physics-informed AI) 

for fault diagnosis techniques 

As available data increases, research on data-driven fault diagnosis methods is 

increasing. However, if we make good use of physical and domain knowledge, we 

can obtain information that may be difficult to obtain by data-driven methods or 

support a data-based method. Therefore, research to develop physics-informed AI-

based fault diagnosis techniques that combine usable physical knowledge and data-

driven methods should be conducted.  

 

Suggestion 2: Fault diagnosis techniques considering class imbalance 

problems 

In real industrial fields, in many cases, the amount of data that can be obtained 

is different for each health condition, and this situation is called the class imbalance 

problem. In this case, it may be difficult to learn a high-performance diagnosis model 

compared to having sufficient data for all states. Therefore, research on developing 

the methods which can effectively learn the high-performance diagnosis models 

even under these class imbalance circumstances should be conducted. 

 

Suggestion 3: Domain adaptation method that maximally uses the information 

from the target domain 

In the UDA problem, since target data is unlabeled, the information that can be 
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obtained from the target domain is limited. However, the ultimate goal of UDA is to 

learn a diagnosis model with high generalization performances in the target domain. 

Therefore, it is necessary to conduct research to develop a method that effectively 

and maximally uses the information extracted from the unlabeled target domain for 

improving the target diagnosis performance. 

 

Suggestion 4: Research on an integrated methodology that properly combines 

several techniques 

In this doctoral dissertation, various methods were presented to maximize the 

use of information for deep learning based fault diagnosis techniques. Since the 

problem situations in which each method is used are different, there may be a limit 

to using these methods simultaneously. However, there may be some possibilities to 

obtain higher diagnosis performances by integrating the component techniques used 

in each method. Therefore, in order to maximize the diagnosis performance of the 

target system, it is necessary to conduct research on an integrated methodology that 

properly combines and uses several techniques according to the problem settings. 
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 국문 초록 

 

딥러닝 기반 고장 진단을 위한 

정보 활용 극대화 기법 개발 
 

서울대학교 대학원 

기계항공공학부 

김 명 연 

 

기계 시스템의 예기치 않은 고장은 많은 산업 분야에서 막대한 

사회적, 경제적 손실을 야기할 수 있다. 갑작스런 고장을 감지하고 

예방하여 기계 시스템의 신뢰성을 높이기 위해 데이터 기반 고장 진단 

기술을 개발하기 위한 연구가 활발하게 이루어지고 있다. 고장 진단 

기술의 목표는 대상 기계 시스템의 고장 발생을 가능한 빨리 감지하고 

진단하는 것이다. 최근 합성곱 신경망 기법을 포함한 딥러닝 기반 고장 

진단 기술은 자율적인 특성인자(feature) 학습이 가능하고 높은 진단 

성능을 얻을 수 있다는 장점이 있어 활발히 연구되고 있다. 

그러나 딥러닝 기반의 고장 진단 기술을 개발함에 있어 해결해야 할 

몇 가지 문제점들이 존재한다. 먼저, 신경망 구조를 깊게 쌓음으로써 

풍부한 계층적 특성인자들을 배울 수 있고, 이를 통해 향상된 성능을 

얻을 수 있다. 그러나 기울기(gradient) 정보 흐름의 비효율성과 과적합 
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문제로 인해 모델이 깊어질수록 학습이 어렵게 된다는 문제가 있다. 

다음으로, 높은 성능의 고장 진단 모델을 학습하기 위해서는 충분한 

양의 레이블 데이터(labeled data)가 확보돼야 한다. 그러나 실제 

현장에서 운용되고 있는 기계 시스템의 경우, 충분한 양의 데이터와 

레이블 정보를 얻는 것이 어려운 경우가 많다. 따라서 이러한 문제들을 

해결하고 진단 성능을 향상시키기 위한 새로운 딥러닝 기반 고장 진단 

기술의 개발이 필요하다. 

본 박사학위논문에서는 딥러닝 기반 고장 진단 기술의 성능을 

향상시키기 위한 세가지 정보 활용 극대화 기법에 대한 연구로 1) 

딥러닝 아키텍처 내 기울기 정보 흐름을 향상시키기 위한 새로운 딥러닝 

구조 연구, 2) 파라미터 전이 및 삼중항 손실을 기반으로 불충분한 

데이터 및 노이즈 조건 하 강건하고 차별적인 특성인자 학습에 대한 

연구, 3) 다른 도메인으로부터 레이블 정보를 전이시켜 사용하는 도메인 

적응 기반 고장 진단 기법 연구를 제안한다. 

첫 번째 연구에서는 딥러닝 모델 내 기울기 정보 흐름을 개선하기 

위한 향상된 합성곱 신경망 기반 구조를 제안한다. 본 연구에서는 

다양한 계층의 아웃풋(feature map)을 직접 연결함으로써 향상된 정보 

흐름을 얻을 수 있으며, 그 결과 진단 모델을 효율적으로 학습하는 것이 

가능하다. 또한 차원 축소 모듈을 통해 학습 파라미터 수를 크게 

줄임으로써 학습 효율성을 높일 수 있다. 

두 번째 연구에서는 파라미터 전이 및 메트릭 학습 기반 고장 진단 

기법을 제안한다. 본 연구는 데이터가 불충분하고 노이즈가 많은 조건 

하에서도 높은 고장 진단 성능을 얻기 위해 강건하고 차별적인 특성인자 

학습을 가능하게 한다. 먼저, 풍부한 소스 도메인 데이터를 사용해 

훈련된 사전학습모델을 타겟 도메인으로 전이해 사용함으로써 강건한 
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진단 방법을 개발할 수 있다. 또한, semi-hard 삼중항 손실 함수를 

사용함으로써 각 상태 레이블에 따라 데이터가 더 잘 분리되도록 해주는 

특성인자를 학습할 수 있다. 

세 번째 연구에서는 레이블이 지정되지 않은(unlabeled) 대상 

도메인에서의 고장 진단 성능을 높이기 위한 레이블 정보 전이 전략을 

제안한다. 우리가 목표로 하는 대상 도메인에서의 고장 진단 방법을 

개발하기 위해 다른 소스 도메인에서 얻은 레이블 정보가 전이되어 

활용된다. 동시에 새롭게 고안한 의미론적 클러스터링 손실(semantic 

clustering loss)을 여러 특성인자 수준에 적용함으로써 차별적인 

도메인 불변 기능을 학습한다. 결과적으로 도메인 불변 특성을 가지며 

의미론적으로 잘 분류되는 특성인자를 효과적으로 학습할 수 있음을 

증명하였다. 

 

주요어:  고장 진단 

 딥러닝 

 합성곱 신경망 

 전이학습 

 비지도 도메인 적응 

 정보 활용 극대화 
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