1,380 research outputs found

    Scalable video/image transmission using rate compatible PUM turbo codes

    Get PDF
    The robust delivery of video over emerging wireless networks poses many challenges due to the heterogeneity of access networks, the variations in streaming devices, and the expected variations in network conditions caused by interference and coexistence. The proposed approach exploits the joint optimization of a wavelet-based scalable video/image coding framework and a forward error correction method based on PUM turbo codes. The scheme minimizes the reconstructed image/video distortion at the decoder subject to a constraint on the overall transmission bitrate budget. The minimization is achieved by exploiting the rate optimization technique and the statistics of the transmission channel

    Implementation issues in source coding

    Get PDF
    An edge preserving image coding scheme which can be operated in both a lossy and a lossless manner was developed. The technique is an extension of the lossless encoding algorithm developed for the Mars observer spectral data. It can also be viewed as a modification of the DPCM algorithm. A packet video simulator was also developed from an existing modified packet network simulator. The coding scheme for this system is a modification of the mixture block coding (MBC) scheme described in the last report. Coding algorithms for packet video were also investigated

    Minimum Distortion Variance Concatenated Block Codes for Embedded Source Transmission

    Full text link
    Some state-of-art multimedia source encoders produce embedded source bit streams that upon the reliable reception of only a fraction of the total bit stream, the decoder is able reconstruct the source up to a basic quality. Reliable reception of later source bits gradually improve the reconstruction quality. Examples include scalable extensions of H.264/AVC and progressive image coders such as JPEG2000. To provide an efficient protection for embedded source bit streams, a concatenated block coding scheme using a minimum mean distortion criterion was considered in the past. Although, the original design was shown to achieve better mean distortion characteristics than previous studies, the proposed coding structure was leading to dramatic quality fluctuations. In this paper, a modification of the original design is first presented and then the second order statistics of the distortion is taken into account in the optimization. More specifically, an extension scheme is proposed using a minimum distortion variance optimization criterion. This robust system design is tested for an image transmission scenario. Numerical results show that the proposed extension achieves significantly lower variance than the original design, while showing similar mean distortion performance using both convolutional codes and low density parity check codes.Comment: 6 pages, 4 figures, In Proc. of International Conference on Computing, Networking and Communications, ICNC 2014, Hawaii, US

    Joint source channel coding for progressive image transmission

    Get PDF
    Recent wavelet-based image compression algorithms achieve best ever performances with fully embedded bit streams. However, those embedded bit streams are very sensitive to channel noise and protections from channel coding are necessary. Typical error correcting capability of channel codes varies according to different channel conditions. Thus, separate design leads to performance degradation relative to what could be achieved through joint design. In joint source-channel coding schemes, the choice of source coding parameters may vary over time and channel conditions. In this research, we proposed a general approach for the evaluation of such joint source-channel coding scheme. Instead of using the average peak signal to noise ratio (PSNR) or distortion as the performance metric, we represent the system performance by its average error-free source coding rate, which is further shown to be an equivalent metric in the optimization problems. The transmissions of embedded image bit streams over memory channels and binary symmetric channels (BSCs) are investigated in this dissertation. Mathematical models were obtained in closed-form by error sequence analysis (ESA). Not surprisingly, models for BSCs are just special cases for those of memory channels. It is also discovered that existing techniques for performance evaluation on memory channels are special cases of this new approach. We further extend the idea to the unequal error protection (UEP) of embedded images sources in BSCs. The optimization problems are completely defined and solved. Compared to the equal error protection (EEP) schemes, about 0.3 dB performance gain is achieved by UEP for typical BSCs. For some memory channel conditions, the performance improvements can be up to 3 dB. Transmission of embedded image bit streams in channels with feedback are also investigated based on the model for memory channels. Compared to the best possible performance achieved on feed forward transmission, feedback leads to about 1.7 dB performance improvement

    Joint Source-Channel Coding of JPEG 2000 Image Transmission Over Two-Way Multi-Relay Networks

    Get PDF
    In this paper, we develop a two-way multi-relay scheme for JPEG 2000 image transmission. We adopt a modified time-division broadcast (TDBC) cooperative protocol, and derive its power allocation and relay selection under a fairness constraint. The symbol error probability of the optimal system configuration is then derived. After that, a joint source-channel coding (JSCC) problem is formulated to find the optimal number of JPEG 2000 quality layers for the image and the number of channel coding packets for each JPEG 2000 codeblock that can minimize the reconstructed image distortion for the two users, subject to a rate constraint. Two fast algorithms based on dynamic programming (DP) and branch and bound (BB) are then developed. Simulation demonstrates that the proposed JSCC scheme achieves better performance and lower complexity than other similar transmission systems

    Study and simulation of low rate video coding schemes

    Get PDF
    The semiannual report is included. Topics covered include communication, information science, data compression, remote sensing, color mapped images, robust coding scheme for packet video, recursively indexed differential pulse code modulation, image compression technique for use on token ring networks, and joint source/channel coder design

    Live video streaming over packet networks and wireless channels

    No full text
    The transmission of live video over noisy channels requires very low end-to-end delay. Although automatic repeat request ensures lossless transmission, its usefulness to live video streaming is restricted to short connections because of the unbounded retransmission latency. An alternative is to use forward error correction (FEC). Since finding an optimal error protection strategy can be time expensive, FEC systems are commonly designed for the worst case condition of the channel, which limits the end-to-end performance. We study the suitability of two scalable FEC-based systems to the transmission of live video over packet networks. The first one uses Reed-Solomon codes and is appropriate for the Internet. The second one uses a product channel code and is appropriate for wireless channels. We show how fast and robust transmission can be achieved by exploiting a parametric model for the distortion-rate curve of the source coder and by using fast joint source-channel allocation algorithms. Experimental results for the 3D set partitioning in hierarchical tree video coder show that the systems have good reconstruction quality even in severe channel conditions. Finally, we compare the performance of the systems to the state-of-the-art for video transmission over the Internet. 1
    • …
    corecore