39,729 research outputs found

    TEACHING IN THE CLOUD MICROELECTRONICS UBIQUITOUS LAB (MULAB)

    Get PDF
    CAD laboratory students activity is mandatory for microelectronics teaching. This, applied in the deep-submicron era, creates new challenges to couple software management simplicity to user friendliness inside lab sessions, which requires the use of complex tools and concepts. In this paper, a new approach to microelectronics CAD deployment is presented, based on virtualization capabilities of new servers hardware and software technology. A test case, realized at Politecnico di Torino, degree of Electronic Engineering, is presented, with real world results on resource consumption and user satisfactio

    Architectural authorship in generative design

    Get PDF
    The emergence of evolutionary digital design methods, relying on the creative generation of novel forms, has transformed the design process altogether and consequently the role of the architect. These methods are more than the means to aid and enhance the design process or to perfect the representation of finite architectural projects. The architectural design philosophy is gradually transcending to a hybrid of art, engineering, computer programming and biology. Within this framework, the emergence of designs relies on the architect- machine interaction and the authorship that each of the two shares. This work aims to explore the changes within the design process and to define the authorial control of a new breed of architects- programmers and architects-users on architecture and its design representation. For the investigation of these problems, this thesis is to be based on an experiment conducted by the author in order to test the interaction of architects with different digital design methods and their authorial control over the final product. Eventually, the results will be compared and evaluated in relation to the theoretic views. Ultimately, the architect will establish his authorial role

    Proposal for a contents design of a graphic engineering lecture

    Get PDF
    In this project the subject of Industrial Design from the bachelor’s degree in Industrial Technologies and Economic Analysis of the ETSEIB is reviewed considering the contents and the teaching and evaluating methods. To acquire a great level and teach the subject with great quality, this project has been developed in order to grant that some of the best methods are used to teach and evaluate the students. The contents have also been reviewed to certify that a similar structure of contents is being followed the same way as some of the more relevant engineering schools. As this subject is part of the bachelor’s degree in Industrial Technologies and Economic Analysis, some of the subjects of the bachelor’s degree in Industrial Technologies, which is another degree from the ETSEIB, are used to compare and conclude the methods that could be used to benefit the subject. This has been done since these subjects have been used as a background to develop the contents and the organization of the Industrial Design subject. Research on some of the most relevant engineering schools in the world and in similar subjects such as Graphical Expression or Computer Aided Design has been done. This has determined the differences between the relevant and prestigious schools and the subjects of Graphical Expression or CAD. Once these different methods have been identified, they are considered to be applied to the organization of the subject, as a proposal, in order to enhance its quality and its reputation. To define which universities are better and more adequate for this project, some crucial facts have been used to reduce the research to a more specific group of engineering schools. The idea behind this project is to be able to clarify and help achieving a greater quality in the subject by reviewing some of the most relevant industrial design schools worldwide to apply some of the ways that they use to achieve such quality and reputation

    Proceedings of the ECCS 2005 satellite workshop: embracing complexity in design - Paris 17 November 2005

    Get PDF
    Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr). Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr)

    GIS and urban design

    Get PDF
    Although urban planning has used computer models and information systems sincethe 1950s and architectural practice has recently restructured to the use of computeraideddesign (CAD) and computer drafting software, urban design has hardly beentouched by the digital world. This is about to change as very fine scale spatial datarelevant to such design becomes routinely available, as 2dimensional GIS(geographic information systems) become linked to 3dimensional CAD packages,and as other kinds of photorealistic media are increasingly being fused with thesesoftware. In this chapter, we present the role of GIS in urban design, outlining whatcurrent desktop software is capable of and showing how various new techniques canbe developed which make such software highly suitable as basis for urban design.We first outline the nature of urban design and then present ideas about how varioussoftware might form a tool kit to aid its process. We then look in turn at: utilisingstandard mapping capabilities within GIS relevant to urban design; buildingfunctional extensions to GIS which measure local scale accessibility; providingsketch planning capability in GIS and linking 2-d to 3-d visualisations using low costnet-enabled CAD browsers. We finally conclude with some speculations on thefuture of GIS for urban design across networks whereby a wide range of participantsmight engage in the design process digitally but remotely

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures
    • 

    corecore