15 research outputs found

    Proceedings of the 8th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

    No full text
    International audienceThe Cologne-Twente Workshop (CTW) on Graphs and Combinatorial Optimization started off as a series of workshops organized bi-annually by either Köln University or Twente University. As its importance grew over time, it re-centered its geographical focus by including northern Italy (CTW04 in Menaggio, on the lake Como and CTW08 in Gargnano, on the Garda lake). This year, CTW (in its eighth edition) will be staged in France for the first time: more precisely in the heart of Paris, at the Conservatoire National d’Arts et Métiers (CNAM), between 2nd and 4th June 2009, by a mixed organizing committee with members from LIX, Ecole Polytechnique and CEDRIC, CNAM

    Proceedings of the 17th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

    Get PDF

    A Fixed-Parameter Algorithm for the Max-Cut Problem on Embedded 1-Planar Graphs

    Full text link
    We propose a fixed-parameter tractable algorithm for the \textsc{Max-Cut} problem on embedded 1-planar graphs parameterized by the crossing number kk of the given embedding. A graph is called 1-planar if it can be drawn in the plane with at most one crossing per edge. Our algorithm recursively reduces a 1-planar graph to at most 3k3^k planar graphs, using edge removal and node contraction. The \textsc{Max-Cut} problem is then solved on the planar graphs using established polynomial-time algorithms. We show that a maximum cut in the given 1-planar graph can be derived from the solutions for the planar graphs. Our algorithm computes a maximum cut in an embedded 1-planar graph with nn nodes and kk edge crossings in time O(3kn3/2logn)\mathcal{O}(3^k \cdot n^{3/2} \log n).Comment: conference version from IWOCA 201

    Hamiltonian chordal graphs are not cycle extendible

    Full text link
    In 1990, Hendry conjectured that every Hamiltonian chordal graph is cycle extendible; that is, the vertices of any non-Hamiltonian cycle are contained in a cycle of length one greater. We disprove this conjecture by constructing counterexamples on nn vertices for any n15n \geq 15. Furthermore, we show that there exist counterexamples where the ratio of the length of a non-extendible cycle to the total number of vertices can be made arbitrarily small. We then consider cycle extendibility in Hamiltonian chordal graphs where certain induced subgraphs are forbidden, notably PnP_n and the bull.Comment: Some results from Section 3 were incorrect and have been removed. To appear in SIAM Journal on Discrete Mathematic

    L(p,q)L(p,q)-Labeling of Graphs with Interval Representations

    Full text link
    We provide upper bounds on the L(p,q)L(p,q)-labeling number of graphs which have interval (or circular-arc) representations via simple greedy algorithms. We prove that there exists an L(p,q)L(p,q)-labeling with span at most max{2(p+q1)Δ4q+2,(2p1)μ+(2q1)Δ2q+1}\max\{2(p+q-1)\Delta-4q+2, (2p-1)\mu+(2q-1)\Delta-2q+1\} for interval kk-graphs, max{p,q}Δ\max\{p,q\}\Delta for interval graphs, max{p,q}Δ+pω\max\{p,q\}\Delta+p\omega for circular arc graphs, 2(p+q1)Δ2q+12(p+q-1)\Delta-2q+1 for permutation graphs and (2p1)Δ+(2q1)(μ1)(2p-1)\Delta+(2q-1)(\mu-1) for cointerval graphs. In particular, these improve existing bounds on L(p,q)L(p,q)-labeling of interval and circular arc graphs and L(2,1)L(2,1)-labeling of permutation graphs. Furthermore, we provide upper bounds on the coloring of the squares of aforementioned classes

    The Almost-Disjoint 2-Path Decomposition Problem

    Full text link
    We consider the problem of decomposing a given (di)graph into paths of length 2 with the additional restriction that no two such paths may have more than one vertex in common. We establish its NP-hardness by a reduction from 3-SAT, characterize (di)graph classes for which the problem can be be reduced to the Stable-set problem on claw-free graphs and describe a dynamic program for solving it for series-parallel digraphs.Comment: 21 pages, 8 figure

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008

    BigraphTalk: verified design of IoT applications

    Get PDF
    Graphical IoT device management platforms, such as IoTtalk, make it easy to describe interactions between IoT devices. Applications are defined by dragging-and-dropping devices and specifying how they are connected, e.g. a door sensor controlling a light. While this allows simple and rapid development, it remains possible to specify unwanted device configurations – such as using the same device to drive a motor up and down simultaneously, risking damaging the motor. We propose , a verification framework for IoTtalk that utilizes formal techniques, based on bigraphs, to statically guarantee that unwanted configurations do not arise. In particular, we check for invalid connections between devices, as well as type errors, e.g. passing a float to a boolean switch. To the best of our knowledge, is the first platform to support the graphical specification of correct-by-design IoT applications. provides fully automated verification and feedback without end-users ever needing to specify a bigraph. This means any application, specifiable in IoTtalk, is guaranteed, so long as verification succeeds, not to violate the given configuration constraints when deployed; with no extra cost to the user

    Intersection of Longest Paths in Graph Theory and Predicting Performance in Facial Recognition

    Get PDF
    A set of subsets is said to have the Helly property if the condition that each pair of subsets has a non-empty intersection implies that the intersection of all subsets has a non-empty intersection. In 1966, Gallai noticed that the set of all longest paths of a connected graph is pairwise intersecting and asked if the set had the Helly property. While it is not true in general, a number of classes of graphs have been shown to have the property. In this dissertation, we show that K4-minor-free graphs, interval graphs, circular arc graphs, and the intersection graphs of spider graphs are classes that have this property. The accuracy of facial recognition algorithms on images taken in controlled conditions has improved significantly over the last two decades. As the focus is turning to more unconstrained or relaxed conditions and toward videos, there is a need to better understand what factors influence performance. If these factors were better understood, it would be easier to predict how well an algorithm will perform when new conditions are introduced. Previous studies have studied the effect of various factors on the verification rate (VR), but less attention has been paid to the false accept rate (FAR). In this dissertation, we study the effect various factors have on the FAR as well as the correlation between marginal FAR and VR. Using these relationships, we propose two models to predict marginal VR and demonstrate that the models predict better than using the previous global VR
    corecore