

Archibald, B., Shieh, M.-Z., Hu, Y.-H., Sevegnani, M. and Lin, Y.-B. (2020)

BigraphTalk: verified design of IoT applications. IEEE Internet of Things Journal,

(doi:10.1109/JIOT.2020.2964026).

There may be differences between this version and the published version. You are

advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/207423/

Deposited on: 8 January 2020

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/207423/
http://eprints.gla.ac.uk/207423/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

1

BigraphTalk: Verified Design of IoT Applications
Blair Archibald, Min-Zheng Shieh, Yu-Hsuan Hu, Michele Sevegnani, Yi-Bing Lin Fellow, IEEE

Abstract—Graphical IoT device management platforms, such
as IoTtalk, make it easy to describe interactions between
IoT devices. Applications are defined by dragging-and-dropping
devices and specifying how they are connected, e.g. a door
sensor controlling a light. While this allows simple and rapid
development, it remains possible to specify unwanted device
configurations – such as using the same device to drive a motor
up and down simultaneously, risking damaging the motor.

We propose BigraphTalk, a verification framework for IoTtalk
that utilizes formal techniques, based on bigraphs, to statically
guarantee that unwanted configurations do not arise. In partic-
ular, we check for invalid connections between devices, as well
as type errors, e.g. passing a float to a boolean switch. To
the best of our knowledge, BigraphTalk is the first platform
to support the graphical specification of correct-by-design IoT
applications.

BigraphTalk provides fully automated verification and feed-
back without end-users ever needing to specify a bigraph. This
means any application, specifiable in IoTtalk, is guaranteed, so
long as verification succeeds, not to violate the given configuration
constraints when deployed; with no extra cost to the user.

Index Terms—device management, application platform, bi-
graphs, model verification

I. INTRODUCTION

The Internet of Things (IoT) combines sensors, actuators,
and heterogeneous computing systems with the existing inter-
net infrastructure [1], [2]. Unfortunately, creating IoT applica-
tions can be difficult, often relying on detailed knowledge of
low-level communication protocols [3]. Device integration and
management systems [4]–[6] abstract over low-level protocols
and are essential to allow both novice and advanced users
to benefit from the increasing availability of IoT hardware.
Several IoT solutions have been used to implement smart
applications for a range of domains including home automa-
tion [7], agriculture [8], aquarium management [9], smart
campuses [10], entertainment [11], art [12], and more. While
the IoT approaches in [7]–[12] allow complicated applications

B. Archibald and M. Sevegnani are in the School of Com-
puting Science, University of Glasgow, UK. E-mail: {blair.archibald,
michele.sevegnani}@glasgow.ac.uk

M.-Z. Shieh is in the Information Technology Service Center, National
Chiao Tung University, Hsinchu, Taiwan. E-mail: mzshieh@nctu.edu.tw

Y.-H. Hu and Y.-B. Lin are in the Department of Computer
Science, National Chiao Tung University, Hsinchu, Taiwan. E-mail:
{yuxuan.cs07g,liny}@nctu.edu.tw

This work was supported in part by the RSE International Exchange
Programme: RSE MOST Joint Project (MOST106-2911-I-009-508), by the
Engineering and Physical Sciences Research Council grant S4: Science of
Sensor Systems Software (EP/N007565/1), by the Center for Open Intelligent
Connectivity from The Featured Areas Research Center Program within
the framework of the Higher Education Sprout Project by the Ministry of
Education in Taiwan, by Ministry of Science and Technology 108-2221-E-
009-047 and by Ministry of Economic Affairs 107-EC-17-A-02-S5-007.

Copyright © 2020 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

(a) IoTtalk application with two devices, Smartphone and Curtain, and four
device features, Acceleration, Down, Up, and Stop. Data flows left-to-right
through Join 1 and each device feature receives the same value.

(b) Equivalent bigraph. The link connecting the three red circles represents
a forbidden configuration involving the corresponding device features. Open
links at the top of the diagram are used to type check the join. Details will be
elaborated in Section IV.

Fig. 1: Relationship between IoTtalk applications and bigraph
model.

to be developed, they provide limited guarantees on application
correctness.

Graphical IoT development provides an intuitive method for
application developers to describe the links, e.g. the data flow
between IoT devices. For example, the IoTtalk [6] graphical
user interface (GUI) describes the relationship between sensors
and actuators graphically, allowing simple data transfer and
transforms to occur. This approach is similar to other model-
driven engineering methods that allow structural aspects of
applications to be described [13]. Here we focus on one
existing tool – IoTtalk – that is specialized to IoT applications.

At the heart of IoTtalk is a web-based GUI, shown in
Fig. 1a, that allows users to drag-and-drop devices, e.g.
Smartphone and Curtain, each containing a set of input and
output device features, e.g. Acceleration, into a workspace.

2

Device features can then be graphically linked via joins –
that implement data transformation and decision logic – to
create an application. Other GUIs for IoT, e.g. WuKong [14]
and Node-RED [15], describe IoT applications using a similar
network-based representation.

While IoTtalk allows development of a wide range of
applications, it often allows too much flexibility; making
it possible to connect two devices that should never have
been connected, while providing limited guarantees of their
behavior at deployment. For example, in Fig. 1a, we try to
simultaneously run the curtain up, down and stop it. As each
actuator receives the same value, they will attempt drive the
motor in different directions potentially leading to hardware
damage. We call such errors a forbidden configuration. For-
bidden configurations have been observed in practice – usually
due to a lack of domain knowledge about specific devices –
and can cause incorrect or inefficient applications, as well as
potential hardware damage.

Another common error that has been observed in practice
is badly typed joins. For example, in Fig. 1a, for Join 1 to be
valid it must convert the floating point accelerometer values
to a boolean for use in the curtain motor switches. If the
conversion is not performed then we have a typechecking error.
By removing typechecking errors we avoid undefined behavior
at deployment.

To stop users creating invalid configurations of devices, we
propose a formal verification approach for IoTtalk that guar-
antees the correctness, i.e. the absence of forbidden configu-
rations and typechecking errors, of application deployments.
While these two errors are some of the most commonly seen
in practice, we aim for an extensible approach that allows
additional errors to be verified in future (see Section VII).
In particular, the theory of bigraphs [16] makes use of the
graphical placement of objects; giving it an almost one-to-one
correspondence with IoTtalk as highlighted by Fig. 1. This
allows interdisciplinary dialogue to take place between the ex-
perts in formal methods and those in IoT. We choose bigraphs
due to this almost one-to-one correspondence with the user
interface, and the graphical nature of bigraphs allowing them
to be easily understood by users (for debugging etc.) without
requiring, for example, knowledge of first order logic or
other notation heavy mathematical techniques. By performing
an automatic translation between an IoTtalk application and
corresponding formal model, end-users benefit from improved
confidence in their applications without extra cost. As far as
we are aware, this is the first coupling of formal methods and
graphical device management frameworks for IoT.

Bigraphs are a universal computational model, defined by
Milner [16], for modeling interacting systems that evolve in
time and space, and have been applied to model a wide range
of systems, e.g. IoT/Edge systems [17]–[19], MixedReality
systems [20], context-aware systems [21], networking [22],
[23], and security of Cyber-Physical systems [24], [25]. Re-
lationships between entities, e.g. devices, are specified using
both the spatial arrangement of nodes, and (hyper-)links
between them. Although existing tools, e.g. those based on
UML [26], have basic support to, for example, express the
safe connection of components, bigraphs are an expressive

computational model, open to extension e.g. to express both
forbidden configurations and typechecking errors in a single
model, and provide an intuitive graphical notation.

We formulate forbidden configurations as static predicate
checks, based on bigraph patterns, which were introduced
in [20] and implemented in BigraphER [27], a suite of
open-source tools that provide support for specification and
verification of bigraphs. Bigraph models directly reflect the
IoTtalk GUI, while allowing the detection of both forbidden
configurations, e.g. Fig. 1a, and typechecking errors.

While we show how to apply bigraphs specifically to the
IoTtalk platform, similar bigraph models could be applied to
other graphical IoT platforms such as Node-RED [15], and to
the wider field of user interface modeling and HCI [28].

We make the following research contributions:
1) We describe the first application of formal methods to

IoT graphical device management platforms.
2) We extend IoTtalk to allow specification of forbidden

configurations between device features, as well as type
information for both device features and joins.

3) We develop a bigraph model for IoTtalk applications,
allowing the presence of forbidden configurations and
typechecking errors to be detected statically.

4) We describe, implement, and evaluate BigraphTalk, a
tool that automatically translates an IoTtalk application
to the equivalent bigraph model and checks it. This
allows users without knowledge of formal methods to
specify correct-by-design IoT applications.

The paper is organized as follows. Section II describes the
IoTtalk platform for building IoT systems by linking a series
of input and output devices. Section III gives an overview of
bigraphs for formally verifying systems. Section IV details
the conversion from an IoTtalk application to an equivalent
bigraph model. We show how the two main safety properties –
finding forbidden configurations and type safety – are encoded
as bigraph predicates. Section V focuses on the BigraphTalk
implementation, describing how we go from a user requesting
verification to a result being displayed. Section VI evaluates
the performace of BigraphTalk with both synthetic and real-
world IoT applications. Section VII discusses the approach and
suggests possible extensions to BigraphTalk, and we conclude
this work in Section VIII.

II. IOTTALK

IoTtalk [6] is an application-layer IoT device management
platform that provides connectivity between various devices
including a broad range of environmental sensors, home ap-
pliances, vehicle trackers, mobile phones, etc. IoTtalk allows
users to configure data interaction among devices to define
new applications quickly and without knowledge of low-level
network protocols such as BlueTooth or ZigBee etc.

Devices connect to the IoTtalk platform using software,
known as a device application (DA), that are typically installed
either on an IoT gateway or integrated within the device.
Many DAs are readily available [29], [30], and developers
may implement new DAs for their own devices.

An example IoTtalk smart home application is shown in
Fig. 2. Here, an air conditioner and curtain within the home

3

Fig. 2: The IoTtalk architecture for a smart home application.

Fig. 3: An example application in the IoTTalk GUI.

are controlled based on both the value of a temperature sensor
(positioned within the air conditioner) and mobile phone data.

Device applications (Fig. 2 (4), (5), (6)) are connected to
the IoTtalk engine (Fig. 2 (2)) that is part of the IoTtalk server
(Fig. 2 (1)). The IoTtalk server consists of a GUI (Fig. 2 (3))
for specifying how devices should be connected, while the
IoTtalk engine performs the data shepherding between devices.

In the IoTtalk platform, a device is a particular instance of a
device model, e.g. representing a smartphone. A device model
consists of one or more device features (DFs), where a DF
specifies a particular input or output capability of a device.
We call them input device features (IDFs) and output device
features (ODFs) respectively. For example, in the smart home
system, the AirCondr DA (Fig. 2 (4)) has two IDFs – IndrTemp
and OutdrTemp – the indoor and the outdoor temperature
sensors, and three ODFs – Temp, Speed, and Switch – that
control the temperature, the speed, and the on/off switches.

To make a new application, a user uses the GUI to connect
IDFs to ODFs at joins. They then select a predefined function
or define a new function, in Python, for each join. This allows,
for instance, input values to be averaged.

An example of using the GUI to create an application is
shown in Fig. 3. In the GUI, IDFs of the same device are
grouped on the left, while ODFs are grouped on the right.
That is, there is a single air conditioner in this application
with input and outputs separated. The application reads indoor
temperature, outdoor temperature, and user’s location, and
uses this to calculate the actuation parameters for the air
conditioner. Join 3 determines when to turn on/off the air
conditioner, e.g. when the user is nearby, join 2 computes the
required fan speed based on current temperature (a control
loop), and join 1 sets the required temperature. In each case,
the joins hide a specific join function that implements the

Fig. 4: A forbidden configuration involving multiple devices.

decision making logic. Creating applications in this manner
is both quick and flexible, and has been used to successfully
implement many IoT applications [31], [32].

Upon receiving new values from IDFs, the IoTtalk engine
computes the new values for the ODFs that are connected
through the same join. This allows the corresponding DA to
update the actual device with the new ODF values. When
the IoTtalk engine receives new values of IDFs, it computes
new values for ODFs connected to the same join. Each ODF
connected to the same join receives the same value. The
corresponding DA updates the values of ODFs on the device.

Many applications have sets of ODFs that should not be set
to the same values or configuration simultaneously. We call
these forbidden configurations. For example, the application
shown in Fig. 1a should be forbidden as we cannot wind the
curtain up, down, and stop it at the same time.

ODFs involved in a forbidden configuration need not be part
of a single device, and some forbidden configurations may
involve multiple devices. For example, in the same room, it is
unreasonable to turn on the heater and the cooler at the same
time, and we should therefore also ban the configuration in
Fig. 4.

Devices are numbered from 1 to n and output device
features in a forbidden configuration are indicated by a triple
consisting of the device number, the type of the device, and
the output device feature identifier. For instance, all the output
device features in the forbidden configuration in Fig. 5a have
the same device number, since they are contained in the same
device (e.g. Curtain), while in the forbidden configuration of
Fig. 4 the output device features have different device numbers
e.g. Cooler and Heater).

As forbidden configurations occur based on the linking be-
tween devices, they can be statically detected before execution,
e.g. down and up motor controls in Fig. 5a. We must also
check multi-path constraints, for example in Fig. 5b, as Join 1
and Join 2 may generate the same output at some point. For
example if Join 1 and Join 2 use the same join function, Fig. 5b
becomes equivalent to Fig. 5a. However, in general, multi-
path constraints are not necessarily erroneous as the join logic
might preclude incorrect configurations. The device features
in Fig. 5c are in two distinct curtains and, unlike in Fig. 5a,
should not be forbidden.

III. BIGRAPHS

Bigraphs are a universal mathematical model, introduced
by Milner [16], for representing the spatial configuration
of physical or virtual entities and their interactions. Spatial
relationships are specified by nesting one entity within or

4

(a) A forbidden configuration.

(b) An application potentially featuring a forbidden configuration depending
on the join functions.

(c) An application not featuring any forbidden configuration as there are two
different curtain devices.

Fig. 5: Possible configurations driving smart curtains.

beside another, while non-spatial interactions are specified as
hyper-links between entities. Each entity is assigned a type
which determines its arity, i.e. number of links, and whether
it is atomic, meaning it cannot contain other nodes.

Bigraphs can be described algebraically or as an equivalent
graphical representation. We focus on the graphical represen-
tation here due to the strong relationship with the IoTtalk
graphical interface.

An example bigraph is in Fig. 6a. Entities are drawn as
labeled shapes – e.g. A, B, C – and represent different
components of the system. In the diagrams, we often use
shapes and colors to denote entity types in order to reduce
the number of textual type labels shown.

Relationships between entities can be described spatially by
placing an entity within or beside another. A region is indicated
by a dashed rectangle and represents a logical partition of
space. In Section IV, we show how regions can be used to
allow a separation of modeling concerns between detecting
forbidden configurations and checking types. Grey rectangles,
such as in Fig. 6b denote sites that indicate parts of the model
that have been abstracted away, i.e. a non-specified bigraph
may occur there, including the empty bigraph.

Connectivity is specified by green hyper-links. Links may
be only partially specified, in which case they connect a name,
e.g. x – usually drawn above the bigraph – or are closed and
not connected to anything, e.g. the link of the right-most B
entity. Similar entities always have the same number of links,
e.g. both A and B have one link in all cases. As all links are
hyper-links, a single link may connect multiple entities such
as all the A entities in Fig. 6a.

To check correctness, domain-specific predicates are spec-
ified as bigraphs [20]. A matching routine then discovers if
a predicate exists within another bigraph. That is, we specify

what an invalid configuration of entities looks like and check
these against a given input model.

An example predicate is shown in Fig. 6b. This predicate
looks for any link involving at least two A entities, possibly
located in two distinct spatial regions of the system, while
allowing arbitrary bigraphs to be nested within the two A
entities.

The result of checking this predicate against Fig. 6a is
in Fig. 6c. Notice, due to the site, the left-most figure still
matches regardless of the C nested within the A, and that the
two right-most A entities also match even though they share
a top-level region. This comes from how bigraphs compose.
Intuitively, we could remove both A entities from the right-
most B and treat it as having two sites. The two regions of the
predicate could then replace both sites, allowing the match to
occur.

Specifying predicates as bigraphs allows them to be easily
understood by end-users, who require no knowledge for formal
logics, and is sufficient for our analysis. We note more
extensive logical properties of bigraphs can be expressed in
the full-blown spatial logic BiLog [33].

IV. MODELLING IOTTALK WITH BIGRAPHS

We define an encoding of IoTtalk applications using bi-
graphs. The encoding details high level entities, such as
devices, as well as predicates describing invalid user-specified
applications. Such applications are automatically translated to
a specific instantiation of the bigraph model, allowing them to
be checked for correctness.

While there are many properties we may want to reason
about, we focus on the following two high-level properties.

• Forbidden configurations: Are we allowed to connect
two (or more) device features together? For example, we
should disallow Fig. 1a as simultaneously attempting to
run the motor in three directions risks burning out the
motor.

• Typechecking errors: Device features (and join func-
tions) have specific input/output type (e.g. float,
boolean, etc.). Connections should be checked to en-
sure they make sense with respect to the types, for exam-
ple, it is unclear what it means to (directly) connect an
accelerometer outputting 〈x, y, z〉 to a boolean switch.

The encoding mimics this separation of concerns using bi-
graph regions to split the model into a connection perspective,
for checking forbidden configurations, and a typechecking
perspective. Such a multi-perspective approach has proved
useful elsewhere [17], [20] to increase the readability and ease
of extension of models, as well as highlight potential design
issues in the systems themselves.

The encoding is designed to be extensible, enabling addi-
tional properties to be added. Possible extensions are discussed
in Section VII.

We begin with an informal discussion of the mapping
between IoTtalk components and bigraphs, before detailing
specific predicates to be checked.

5

(a) (b)

(c)

Fig. 6: (a) Example bigraph with entities A, B, and C; (b) example predicate; (c) occurrences of the predicate (highlighted in
red) in the example bigraph.

TABLE I: BigraphTalk entities.

Entity Arity Contained By Linked Entities Description

Connection Perspective
Device 0 Connection Perspective – IoTtalk Device
Device Id(id) 0 Device – Unique device id, e.g. MAC Address
Device Model(mdl) 0 Device – Device model name, e.g. smartphone
IDF 2 Device Join pt, DF Input device feature
ODF 2 Device Join pt, DF Output device feature
Ind 1 ODF Ind Independence link end
DF Id(id) 0 IDF/ODF – Device feature name, e.g. accelerometer
Join 1 Connection Perspective Join Fn IoTtalk Join
Join Id(id) 0 Join – Unique join identifier
Join pt 1 Join ODF/IDF Join connection point

Typechecking Perspective
DF 1 Typechecking Perspective ODF/IDF Arbitrary device feature
Join Fn 1 Typechecking Perspective Join Join function wrapper
Join Fn Ins 0 Join Fn – Function input block
Join Fn Outs 0 Join Fn – Function output block
Port 0 Join Fn/Join Fun Ins/Join Fun Outs – Typed connection wrapper
Port Id(num) 0 Port – Port number
Port pt 1 Port Port pt Port connection point
Bool 0 Port – Boolean type
Num 0 Port – Int/Float type
Min(x) 0 Port – Min val for Num type
Max(x) 0 Port – Max val for Num type
String 0 Port – String type
JSON 0 Port – JSON type
Any 0 Port – Type wildcard
Missing Args 0 Port – Missing argument connection point

A. Mapping IoTtalk to Bigraphs

The entities specified by the encoding are presented in
Table I. Each entity has: a fixed arity that defines the number
of links, the entities it can link with, and a contained by
relation that defines the placement of the entity1. We do not
explicitly check for well formed input models, e.g. ensuring
device does not contain another device, as such configurations
are not specifiable in the IoTtalk user interface.

Using these entities we show the two perspectives corre-
sponding to Fig. 1a in Fig. 1b and Fig. 7. The full bigraph
model is built by joining like-names on the open links.

1This defines a sorting scheme for the bigraphs (see [16, C.6]).

The bigraph model – particularly the Connec-
tion Perspective – closely resembles the original IoTtalk
GUI, allowing it to be understood by both IoTtalk and formal
method experts.

1) Connection Perspective: Each IoTtalk device corre-
sponds to a Device entity, with the Device Model describing
the type of device, e.g. a smartphone. We model specific
instances of devices, i.e. one Device entity per-physical device
in the system. For this purpose, devices always contain a
unique Device Id. In practice this is often the MAC address
of the device.

Devices contain a set of either input (IDF) or output
(ODF) device features. As with devices, each device feature is
assigned an identifier (DF Id). This identifier must be unique

6

Fig. 7: Typechecking perspective bigraph corresponding to Fig. 1a.

within a single device, e.g. we disallow two device features
called switch. This allows the pair 〈Device Id, DF Id〉 to
uniquely determine a specific device feature.

Device features link to their equivalent representation in
the Typechecking Perspective as well as to any joins. As
bigraphs support hyper-links, a single input/output may link
to multiple joins, e.g. in Fig. 5b.

To detect forbidden configurations, ODFs that must not
share an input (are independent) contain an additional entity
Ind for each forbidden configuration they are part of. For-
bidden configurations are then described by connecting Ind
entities for each ODF in the configuration together (e.g. the red
circles in Fig. 1b). The use of Ind, rather than linking directly
to ODF entities, allows connections between any number of
ODFs2. ODFs that feature in multiple forbidden configura-
tions have additional Ind entities for each configuration. As
bigraphs support hyper-links, a forbidden configuration can
be specified between any number of ODFs.

IoTtalk joins are converted to Join entities that store a
unique Join Id alongside connections to device features. As
with the Ind entities, the use of Join pts instead of direct
linking allows an IDF/ODF to be connected to any number of
Joins.

2) Typechecking Perspective: The Typecheck-
ing Perspective presents lower-level details of device
features (DFs) and join functions (Join Fns). In particular, it
models the typing and input/output arity information that is
not present in the Connection Perspective. Device/DF/Join
identifiers are not required in this perspective as these can be
recovered from the Connection Perspective by following
the cross-perspective links.

Device features are connected to join functions using a
Port entity. Ports contain type information that allows basic
type checking to be performed (Section IV-C). Types may
include additional information such as valid ranges for Num
types. Port Ids ensure correct mapping of device features with

2This method is often used to overcome the fixed arity (number of links)
of bigraph entities (e.g. in [17]) without using additional entity types – one
per arity required.

multiple outputs to join functions expecting tuple inputs. A
port may be connected to multiple other ports using different
Port pt entities.

B. Detecting Forbidden Configurations

Forbidden configurations occur when two or more output
features, that should be driven independently, are connected
to the same input device feature. This can occur directly,
through a single join (Fig. 1a), or through multiple (join)
paths (Fig. 5b). As the functionality of a join can be varied
by implementing a different join function, two outputs being
connected to a single input through multiple joins is not neces-
sarily an error; but it has the potential to be one depending on
the join functions. For example, the join functions of Fig. 5b
may ensure only one motor is driven at a time if, say, join 1
always returns False.

To allow these checks to be made IoTtalk has been extended
to allow an administrator/domain expert, who is creating the
device description, to specify device features that should be
driven independently. Device independence is represented as
interconnected Ind entities within all device features that occur
in a forbidden configuration. Independence links may occur
between any device features, even if they do not share the same
device. This allows cases such as in Fig. 4, where the cooler
and heater devices should not be connected, to be modeled.

Predicates for forbidden configurations are in Fig. 8 and
Fig. 9. Due to the closed Ind link, these predicates match the
case where exactly two device features are independent. Sim-
ilar predicates are required to check n independent devices.

To determine a forbidden configuration through a single
join (Fig. 8) we match any instance where two ODFs, that
should be independent, are both connected to a single join.
This predicate matches regardless of the input device they
are connected to. By placing the ODF’s and Join in different
bigraph regions, this predicate matches regardless if the device
features are within a single device or spread across multiple
devices.

The predicate in Fig. 9 handles the case of where there is
more than one path from a single input to two ODFs. This is

7

Fig. 8: Forbidden configuration predicate: two independent
(link between the red circles) device features, regardless of
location, share a join. Hyper-links on ODF inputs are open
but omitted for clarity.

Fig. 9: Potential forbidden configuration predicate: two in-
dependent (link between the red circles) devices, regardless
of location, share an input device feature. Hyper-links on
IDF/ODF output/input are open but omitted for clarity.

similar to the predicate for a single join, however now relies
on checking if the same IDF is connected through two joins
to two independent ODFs.

C. Type Safety

Each device feature has a type that determines the format,
and possibly the range, of input/output values from/to the
device feature. To ensure correctness, we check the validity
of input/output type pairs as data moves through joins. This
amounts to encoding a simple typing system in bigraphs. Im-
portantly, we only check the device feature interfaces against
the join function interfaces. The code of the join functions is
not verified.

IoTtalk supports 5 main types of data: booleans,
integers, floats, strings and JSON. In the encod-
ing, we combine integers and floating point into a single
Num type which reflects the implicit conversions possible
in join functions. The JSON format represents an arbitrary
JSON objects. When performing typechecking, we treat all
data labeled JSON as the same static type JSON, without
considering the run-time values. While an implicit conversion
of numerical types to booleans is possible (i.e. val = 0
implies False), we maintain booleans as a separate type
as it more accurately reflects devices such as switches.

IoTtalk has been extended to support assigning types to join
functions. As join functions are written in Python, which does
not feature static typing, function types are declared using a
function decorator as in Listing 1. The first argument of the
decorator determines the type and the range of the return value,
while the other arguments indicate the types and the ranges of
any inputs.

IoTtalk supports composite data types to describe device
features with multiple outputs, and we use tuples to represent

Listing 1: Python decorator to enforce the types and ranges of
function return value and arguments.
@enforce_types((int, 1, 5),(float, 0.0, 1.0))
def fan_speed(x):

return 1 + int(4 * x)

Fig. 10: Typechecking predicate: cannot connect Num to Bool.

them in the decorator. For example, the device feature
GeoLocation outputs a pair of floats representing
longitude and latitude. We describe this using a type such as
((float,-90.0,90.0),(float,-180.0,180.0))
in a join function decorator. Additional predicates (omitted)
determine errors in correctly mapping between tuple
inputs/outputs by matching when Port Id’s do not align.

In the case None is used to describe the data type, or
when no decorator is provided, we assign ports a special type
Any that never fails to typecheck. The use of Any increases
the range of applications that can be modeled at the cost of
reduced correctness guarantees.

Typechecking uses predicates such as in Fig. 10. This
predicate looks for a mismatch in the types of two (or more)
connected ports and reports this as an error. We encode
data direction using the fact all connections move through a
join function with separate input and output blocks. Similar
predicates exist for Join Fn Outs. We require a predicate
for all combinations of the 4 types in both input and output
positions: 24 in total. No predicates are added for Any types,
ensuring they pass all typechecking.

Although the encoding defines entities to model the range
of numeric types, due to limited support in BigraphER for
parameter comparisons, we currently do not check range
correctness. This could be added in future through a predicate
such as in Fig. 11. As IoTtalk allows range values to be
determined using machine learning [6], this could be used
to dynamically update the range parameters of the model at
runtime.

Fig. 11: Range check predicate: invalid range mapping where
[a, b] * [c, d].

8

Fig. 12: Missing parameter predicate: join function argument
not connected.

To ensure join functions are being used correctly, we not
only check the types of the inputs/outputs, but also that no
inputs/outputs are missing, e.g. passing only two Num types
to a function that expects three. These checks only occur for
join functions as, for example, we may wish to only connect
the x component of an accelerometer to a join.

To match the cases where connections are missing, we
assign the port a common link name – uncon. As it is difficult
to match on the absence of something within a bigraphs, i.e.
that a link does not exist, we introduce an additional entity –
Missing Args – that connects to any uncon links. With this
in place, finding a missing argument corresponds to matching
the predicate shown in Fig. 12.

V. IMPLEMENTATION

Model verification can heavily consume computation re-
sources and degrade the performance of other subsystems on
the same machine. Rather than add verification directly to
IoTtalk, we implement the model verification as a separate
tool – BigraphTalk – which interfaces to IoTtalk through
a JSON API over TCP/IP (see Fig. 13). This allows us
to deploy the IoTtalk server and the BigraphTalk system
on different machines to provide more flexible deployment.
BigraphTalk source code and a selection of examples are
available online [34].

To integrate IoTtalk with BigraphTalk, we add a forbidden
configuration and verification module to the IoTtalk engine.
The former manages the forbidden configurations. The latter
communicates with BigraphTalk directly. It composes the
messages for verification requests and interprets the results
from BigraphTalk. We extend the original IoTtalk GUI to
provide new functions and create new tables in the database
to store forbidden configurations.

To specify forbidden configurations, we add a new page to
the IoTtalk GUI that allows a domain expert to create new
forbidden configurations by choosing a number of devices
and picking device features involved (see Fig. 14). Based
on the inputs of Fig. 14, the forbidden configuration module
creates or modifies the required rows of the corresponding
tables when the user saves in the IoTtalk GUI. Assume a
new forbidden configuration involves n devices and k toggled
device features. The forbidden configuration module inserts a
new row consisting of its ID number f , name and description
into the ForbiddenConfiguration table. Then, it inserts
k rows into the ForbiddenFeature table. Each of these
rows consists of four columns as follows.

• ff_id: The primary index.

IoTtalk Engine

IoTtalk Server

BigraphTalk
Forbidden

Configuration
Module

Database GUI

TCP/IP

ORM
MQTT/

websocket

Verification
Module

Fig. 13: Implementation overview.

(a) Forbidden configuration for Fig. 1a.

(b) Forbidden configuration for Fig. 4.

Fig. 14: Interface for specifying forbidden configurations.

• fc_id: This device feature appears in the forbidden
configuration of ID fc_id.

• mf_id: The ID number for retrieving the information of
the device feature and the associated device model.

• d_idx: The feature belongs to the d_idx-th one of the
n devices involved.

This allows us to retrieve the forbidden configuration of ID
number f by selecting all rows whose fc_id is f from the
ForbiddenFeature table.

When a forbidden configuration is created or modified, it
automatically applies to all projects using the devices. This
benefits every user with improved guarantees of correctness
without requiring expert device knowledge.

A user requests verification by selecting a new verify option
in the IoTtalk user interface. The verification module then
encodes the details of devices, joins, and connections – includ-
ing any type information and forbidden configurations – into

9

IoTtalk Model
Generator

IoTtalk Encoding

BigraphER

BigraphTalk

JSON

model

entities
+

predicates

JSON

Fig. 15: BigraphTalk architecture.

a JSON message. This message is passed to the BigraphTalk
system for verification. The message protocol is given in
Appendix A.

BigraphTalk uses a model generator to construct an instance
of the bigraph model corresponding to the IoTtalk application.
The encoding includes predefined entities and predicates as
described in Section IV. The conversion is fully automated
and requires no input from the user. We then validate the
model by matching it against the predicates. For working with
bigraphs, we use the BigraphER tool [27] that provides both
a textual language, based on the algebra of bigraphs, and a
simulation/verification environment. There exist several good
tools for bigraphs, e.g. BiGMTE [35]. We choose BigraphER
as it is open-source, actively maintained, and provides a library
of matching routines to build upon. Crucially, it is the only
tool that supports features such as parameterized entities (e.g.
allowing Device Model(“Smartphone”) that are essential for
our implementation. The architecture of the BigraphTalk sys-
tem is in Fig. 15.

To aid debugging of IoTtalk models, BigraphTalk extracts
the Device Id, DF Id, etc. of all devices and joins involved
in an error, and returns these to IoTtalk as JSON. Then the
verification module pushes the information to the GUI for
display. In practice, we diverged slightly from the predicates in
Section IV to make it easier to extract debugging information.
The JSON message format is described in Appendix B.

The GUI reports invalid applications to the user as follows.
If the verification indicates the existence of a forbidden con-
figuration or typechecking error then the erroneous device fea-
tures and joins are colored in red as in Fig. 16a. For potential
errors, IoTtalk warns the user by coloring the corresponding
joins and device features yellow (see Fig. 16b). When multiple
errors are detected they are returned to IoTtalk in a single
message. Joins or device features appearing in both errors and
warnings are colored red, e.g. Join2 in Fig. 16c.

Importantly, the network application is verified with respect
to the model generator output and we assume that the model
generator constructs a correct model.

VI. EVALUATION

We evaluate BigraphTalk on a real-world application from
the ArgiTalk [8] project, as well as a set of synthetic ap-
plications designed to provide worst-case analysis of the
BigraphTalk system. All experiments are run on a machine
with an Intel core-i7 960 (3.2 GHz), 16 GB RAM, and Ubuntu

(a) Forbidden configuration highlighted in red.

(b) Potential forbidden configuration highlighted in yellow.

(c) Display errors with higher priority.

Fig. 16: User interface feedback from verification results.

Fig. 17: The verification result of the AgriTalk example

18.04 installed. Rather than specifying these applications in
the GUI, we use a testing program that communicates directly
with the IoTtalk verification module (see Fig. 13). In each
case we record the time spent in BigraphTalk, i.e. performing
the bigraph encoding/matching, and the full time required to
validate, i.e. including marshaling of the IoTtalk application
and errors to/from JSON. In each test case, BigraphTalk
performs well and accurately successfully detects all errors
and warnings.

Figure 17 shows a real-world network application deployed

10

Fig. 18: A synthetic IoTtalk application for testing

as part of the ArgiTalk project [8]. AgriTalk provides inex-
pensive smart agriculture solutions to precision soil farming.
In this application, the soil sensor device SoilSensor and
the weather station device WeatherSTA control irrigation,
pest control and the repellent bulbs. The soil sensor device
(SoilSensor) includes the sensors for electric conductivity
(EC-I), moisture (Moisture-I), and pH (pH-I). The sensors
in the weather station device (WeatherSTA) are for humidity
(Humidity-I), temperature (Temperature-I), insect trapper that
reports the number of trapped bugs (InsectTrapper-I), rain
gauge (RainGauge-I) and ultraviolet (UV-I). These sensors
control three actuator devices. The Irrigation device deter-
mines the amounts of dripping (Drip-O), nitrogen ingredient
(Nitrogen-O), phosphorus ingredient (Phosphorus-O) and
potassium ingredient (Potassium-O). The PestSpray device
includes a switch to control spraying of biopesticides (Switch-
O). The RepellentBulb device includes a switch to control
repellent bulbs (Switch-O). This application consists of a
similar number of devices/device features as is common in
many applications, with large scale deployments often being
replicas of a base design e.g. a field may consist of several
smaller sites all running the application of Fig. 17.

The application in Fig. 17 contains one forbidden configura-
tion error and one typechecking error. Connecting PestSpray
and RepellentBulb is forbidden, as simultaneously turning on
the sprayers and the repellent bulbs both reduces the effect of
the biopesticides and wastes electricity i.e. we should only run
one form of repellent at a time. Using a function with three
inputs for Join 1 causes a typechecking error as EC-I and
pH-I provide a single float measurement each. BigraphTalk
detects both errors correctly. The mean verification time over
100 runs is 2.53 seconds, of which BigraphTalk takes 0.86
seconds. Verification time is similar to that of source code
compilation, and these results show the responsiveness of
verification is adequate to enable online feedback during
application development.

To evaluate the scalability of BigraphTalk we use two sets of
synthetic applications designed to stress-test the verification,
and these should be considered worst-case scenarios. The tests
take a similar form to Fig. 18 with a single input device
connected to two output devices that should be independent.

In general, while bigraph matching is an NP-complete
problem, due to the efficiency of modern solvers, e.g. to prune
large sections of the search space, we expect the time required
to find an error to be (primarily) a function on the size and
number of predicates (errors) we are trying to match. That is,
we expect the verification time to increase primarily with the
number of errors, not the size of the bigraph we are matching

Fig. 19: Verification time as the number of joins are increased

Fig. 20: Verification time for increasing numbers of errors

on.
In Fig. 19, we show the performance of BigraphTalk as we

increase the number of joins (copies of join 1) in Fig. 18 from
1 to 15, where each join connects to all device features. By
connecting each join to all device features we get an additional
forbidden configuration, plus several multi-path forbidden con-
figuration errors, for each join added. As expected, the time
required to verify the application increases with the number of
joins, and hence errors, with even the largest test case featuring
15 joins taking only 18 seconds to verify. In practice, it is
unlikely that there will be more than a few joins between the
same device features, giving us confidence in the scalability
of verification to handle even extreme cases.

To show the effect of increasing the number of device
features, in Fig. 20, we show the performance of BigraphTalk
using an application with one smartphone, five coolers, five
heaters and ten joins. In each case we increase the number of
output device features connected to each join. When we con-
nect all device features to every join, there are 2500 errors of
which 250 are single path forbidden configurations, and 2250
are multi-path forbidden configurations. Again, BigraphTalk
performs well, spending only 0.134 seconds per error in the
worst case. In practice we expect the number of total errors to
be less than 500, allowing BigraphTalk to verify even complex
applications in less than 1 minute.

As expected, formal verification can consume a lot of

11

Fig. 21: Example model extension to represent locations.

computing resources often running with 100% CPU utilization.
This is not an issue in practice given the ubiquity of multi-core
machines, and the ability to run BigraphTalk on a second host
due to the TCP interface. Verification is only performed when
requested by the user at design time and deployed IoTtalk
applications are not affected by the increased CPU usage.

VII. DISCUSSION

While BigraphTalk allows fully automated verification from
the perspective of an end-user, device feature constraints must
still be specified by an experienced user ahead of time. This
is unavoidable as it requires device domain knowledge that
cannot be automatically inferred. However, like creating an
IoTtalk device model itself, this is a one-off overhead per
device and the device constraints may be re-used in many
projects. This allows non-device experts to conform to de-
vice constraints they may not be aware of. For smart home
applications [36] we have found device feature constraints
are relatively easy to specify. We are also working on the
aforementioned smart agriculture applications [8], and are
collecting feedback from end-users on any difficulties expe-
rienced when specifying device feature constraints.

By maintaining BigraphTalk as a separate package we may
incrementally add additional features with limited disruptions
to the main IoTtalk development. There are numerous ways
to extend this work in the future, including:

1) Additional Property Analysis: Bigraphs are more flex-
ible than, say, a type checker only approach, in that we
can encode additional properties. One such property would
be modeling device location, for example, allow a phone to
communicate with a device only if they are in the same
location, e.g. disallow turning on a fire if no one is around
to supervise. Location based properties could be handled in
an additional modeling perspective such that a device linked
under a location control is said to be in the location. This
is shown in Fig. 21. Here one smartphone is in Dorm 1
and another simply in the Guest House 1. Using bigraphs
with sharing [37] allows devices to be in multiple locations
simultaneously, for example, to model wireless router ranges;
further increasing the expressivity of the model.

Additional device information could allow, for example,
device ownership and privacy properties, e.g. data within a

dorm should only be accessible to the dorm resident. Their
verification could follow an approach based on a bigraph
encoding similar to that used for forbidden configurations and
typechecking.

2) Runtime Monitoring: So far we have only utilized
bigraphs to check static properties of IoTtalk applications.
However, bigraphs also admit a reactive theory that describes
how they evolve over time. This can be used to allow runtime
monitoring [17], where a single model is maintained by
BigraphTalk and events, e.g. GUI updates, are passed from
IoTtalk to trigger model updates. For example, a user may
add a new device, triggering a new device event that causes
the device to be added into the model. At some later time,
the user may then remove the device, again causing a model
update.

Runtime monitoring allows a wider range of properties
to be specified. Reliability of connections could be encoded
by having the system send the model an event each time a
connection is used. Timestamp information can then be added
to the joins, and predicates can match on timestamps that have
not been used in the last t seconds; potentially indicating an
error.

Maintaining a model at runtime not only allows checking
of a wider range of properties, but, by allowing changes in the
model to be reflected back into the system (not just from the
system to the model), we gain the ability to perform model
based adaption of the deployed system. Such self-adaptation
is common in the models@runtime approach [38].

3) Model Driven User Interface Control: Currently appli-
cations are modeled in IoTtalk and then sent to BigraphTalk
for verification purposes, with BigraphTalk providing either
success or a particular error with the model. Given a reactive
bigraph model, such as that needed for the runtime monitoring
above, we can generate a transition system that details the
events that might occur in the future, e.g. a user adds a join.
By checking error predicates on future paths we can determine
which operations in the GUI should be disallowed to avoid
forming a bad model. That is, instead of only checking an
existing IoTtalk application for correctness, stop the user being
able to create invalid models.

VIII. CONCLUSION

IoT integration and management platforms such as IoTtalk
are essential to allow non-expert users to design coherent and
usable internet-enabled systems. Although these tools have
proved useful in practice, they often have limited capabilities
for providing guarantees on the correctness of the designed
application. We have shown how bigraphs have been suc-
cessfully applied to specify correct-by-design IoT applications
in the IoTtalk platform so that they are free from forbidden
configurations and typechecking errors. The fully automatic
translation from IoTtalk applications to bigraphs has been
implemented and evaluated in a new tool – BigraphTalk –
giving users improved confidence in the correctness of their
applications without requiring knowledge of formal methods.

12

APPENDIX

A. Format of messages to BigraphTalk

The JSON message sent to BigraphTalk is an JSON object
specifying the network application and forbidden configura-
tion to be verified. It has three attributes Device_List,
Join_List and Forbidden_Configuration, see List-
ing 2.

Listing 2: JSON object sent to BigraphTalk.
{

"Device_List": [device1, ...],
"Join_List": [join1, ...],
"Forbidden_Configuration": [fc1, ...]

}

The attribute Device_List is an array of devices which
build the network application. We encode each device into
a JSON using the format in Listing 3. Device_ID is
a unique identifier for the device in the IoTtalk system.
Device_Model is a string representing the name of the
model of the device. DF_List is an array of the features
of the device used in the network application.

Listing 3: A device.
{

"Device_Id": device_id,
"Device_Model": device_model,
"DF_List": [df1, ...]

}

We describe the device features with the following format.
If the df_parameter does not have maximum or minimum
value, we just omit the corresponding attribute.

Listing 4: A device feature.
{

"df_name": name,
"df_type": input_or_output,
"df_parameter": [

{
"param_i": index,
"param_type": data_type,
"max": max_value,
"min": min_value

}
]

}

The attribute Join_List in Listing 2 is an array of joins
which connect the devices in the network application. The
information of joins are encoded into the format in Listing 5.
Each join has a unique Join_Id and a function described by
a JSON object. A join function has a unique identifier and the
description for its input and output. We use arrays of device
features to denote the connection of the join.

Listing 5: A join.
{

"Join_Id": join_id,
"Join_Fn": {

"Fn_Id": fn_id,
"Fn_Input": [(type1,min1,max1), ...],
"Fn_Output": (type, min, max)

},

"Devices": {
"input": [idf1, ...],
"output": [odf1, ...]]

}
}

The attribute Forbidden_Configuration in Listing 2
is an array of forbidden configurations which only involve
the device models in the network application. We use the
format in Listing 5 to describe them. Each element in the array
Data designates a particular device feature. If a forbidden
configuration involves the same device feature of several
distinct devices, we assign different Device_Id’s to them.
If a forbidden configuration involves several device features
of the same device, then we assign the same Device_Id to
the corresponding device features.

Listing 6: A forbidden configuration.
{

"FC_Name": name,
"Data": [

{
"Device_Id": device_id,
"Device_Model": device_model,
"Device_Feature": device_feature

},
...]

}

B. Format of messages to IoTtalk

BigraphTalk sends the errors as an array like Listing 7.
If there is no error, then IoTtalk will receives an empty
array. Each error is encoded as a JSON object. Currently,
error_type is one of “Forbidden Configuration”, “Possi-
ble Forbidden Configuration”, “Type mismatch” and “Miss-
ing argument”. The detailed text information is given by
error_msg. Each element of the array data indicates the
problematic connection with the corresponding join and device
feature.

Listing 7: JSON array sent back to IoTtalk.
[

{
"error_type": error_type,
"error_msg": error_msg,
"data": [

{
"join_id": join_id,
"device":{

"device_id": device_id,
"df_name": df_name

}
},

...]
},

...]

REFERENCES

[1] S. Verma, Y. Kawamoto, Z. M. Fadlullah, H. Nishiyama, and N. Kato,
“A survey on network methodologies for real-time analytics of massive
IoT data and open research issues,” IEEE Communications Surveys and
Tutorials, vol. 19, no. 3, pp. 1457–1477, 2017. [Online]. Available:
https://doi.org/10.1109/COMST.2017.2694469

https://doi.org/10.1109/COMST.2017.2694469

13

[2] T.-Y. Chan, Y. Ren, Y.-C. Tseng, and J.-C. Chen, “eHint: An efficient
protocol for uploading small-size IoT data,” in 2017 IEEE Wireless Com-
munications and Networking Conference, WCNC 2017, San Francisco,
CA, USA, March 19-22, 2017, 2017, pp. 1–6.

[3] F. Corno, L. D. Russis, and J. P. Senz, “On the challenges novice
programmers experience in developing IoT systems: A survey,” Journal
of Systems and Software, vol. 157, p. 110389, 2019.

[4] “Allseen alliance,” accessed 2016. [Online]. Available: https:
//allseenalliance.org/

[5] “Standards for M2M and the Internet of Things,” accessed: 2019-04-08.
[Online]. Available: http://www.onem2m.org/

[6] Y.-B. Lin, Y.-W. Lin, C.-M. Huang, C.-Y. Chih, and P. Lin, “IoTtalk: A
management platform for reconfigurable sensor devices,” IEEE Internet
of Things Journal, vol. 4, no. 5, pp. 1552–1562, Oct 2017.

[7] C.-S. Shih, J.-J. Chou, N. Reijers, and T.-W. Kuo, “Designing CPS/IoT
applications for smart buildings and cities,” IET Cyber-Physical Systems:
Theory Applications, vol. 1, no. 1, pp. 3–12, 2016.

[8] W.-L. Chen, Y.-B. Lin, Y.-W. Lin, R. Chen, J.-K. Liao, F.-L. Ng, Y.-Y.
Chan, Y.-C. Liu, C.-C. Wang, C.-H. Chiu, and T.-H. Yen, “AgriTalk:
IoT for precision soil farming of turmeric cultivation,” IEEE Internet of
Things Journal, pp. 5209–5223, 2019.

[9] C. Dupont, P. Cousin, and S. Dupont, “IoT for aquaculture 4.0 smart
and easy-to-deploy real-time water monitoring with IoT,” in 2018 Global
Internet of Things Summit (GIoTS), June 2018, pp. 1–5.

[10] X. Li, R. Lu, X. Liang, X. Shen, J. Chen, and X. Lin, “Smart community:
an internet of things application,” IEEE Communications Magazine,
vol. 49, no. 11, pp. 68–75, November 2011.

[11] Y. Sulema, “Mulsemedia vs. Multimedia: State of the art and future
trends,” in 2016 International Conference on Systems, Signals and Image
Processing (IWSSIP), May 2016, pp. 1–5.

[12] X. Xiao, P. Puentes, E. Ackermann, and H. Ishii, “Andantino: Teaching
children piano with projected animated characters,” in Proceedings of the
The 15th International Conference on Interaction Design and Children,
ser. IDC ’16. New York, NY, USA: ACM, 2016, pp. 37–45.

[13] A. R. da Silva, “Model-driven engineering: A survey supported
by the unified conceptual model,” Computer Languages, Systems
& Structures, vol. 43, pp. 139–155, 2015. [Online]. Available:
https://doi.org/10.1016/j.cl.2015.06.001

[14] C.-S. Shih, J.-J. Chou, and K.-J. Lin, “WuKong: Secure run-time
environment and data-driven IoT applications for smart cities and smart
buildings,” Journal of Internet Services and Information Security (JISIS),
vol. 8, no. 2, pp. 1–17, May 2018.

[15] “Node-RED framework,” accessed: 2019-04-26. [Online]. Available:
https://nodered.org/

[16] R. Milner, The Space and Motion of Communicating Agents. Cambridge
University Press, 2009.

[17] M. Sevegnani, M. Kabác, M. Calder, and J. A. McCann, “Modelling
and verification of large-scale sensor network infrastructures,” in 23rd
International Conference on Engineering of Complex Computer Systems,
ICECCS 2018, Melbourne, Australia, December 12-14, 2018. IEEE
Computer Society, 2018, pp. 71–81.

[18] H. Sahli, T. Ledoux, and É. Rutten, “Modeling Self-Adaptive Fog Sys-
tems Using Bigraphs,” in 17th International Workshop on Foundations of
Coordination Languages and Self-Adaptive Systems Proceedings, Oslo,
Norway, Sep. 2019.

[19] S. Marir, F. Belala, and N. Hameurlain, “A formal model for interaction
specification and analysis in iot applications,” in Model and Data
Engineering - 8th International Conference, MEDI 2018, Marrakesh,
Morocco, October 24-26, 2018, Proceedings, 2018, pp. 371–384.
[Online]. Available: https://doi.org/10.1007/978-3-030-00856-7 25

[20] S. Benford, M. Calder, T. Rodden, and M. Sevegnani, “On lions, impala,
and bigraphs: Modelling interactions in physical/virtual spaces,” ACM
Transactions on Computer-Human Interaction, vol. 23, no. 2, pp. 9:1–
9:56, 2016.

[21] T. A. Cherfia, K. Barkaoui, and F. Belala, “A brs-based modeling
approach for context-aware systems: A case study of smart car system,”
in 12th IEEE International Conference on Embedded and Ubiquitous
Computing, EUC 2014, Milano, Italy, August 26-28, 2014, 2014, pp.
310–314. [Online]. Available: https://doi.org/10.1109/EUC.2014.53

[22] M. Calder, A. Koliousis, M. Sevegnani, and J. S. Sventek, “Real-time
verification of wireless home networks using bigraphs with sharing,”
Science of Computer Programming, vol. 80, pp. 288–310, 2014.

[23] M. Calder and M. Sevegnani, “Modelling IEEE 802.11 CSMA/CA
RTS/CTS with stochastic bigraphs with sharing,” Formal Aspects of
Computing, vol. 26, no. 3, 2014.

[24] C. Tsigkanos, L. Pasquale, C. Ghezzi, and B. Nuseibeh, “On the
interplay between cyber and physical spaces for adaptive security,” IEEE
Transactions on Dependable and Secure Computing, vol. 15, no. 3, pp.
466–480, May 2018.

[25] F. Alrimawi, L. Pasquale, and B. Nuseibeh, “On the automated man-
agement of security incidents in smart spaces,” IEEE Access, vol. 7, pp.
111 513–111 527, 2019.

[26] W. J. Thong and M. A. Ameedeen, “A survey of UML tools,” in
Proceedings of the Second International Conference on Advanced
Data and Information Engineering, DaEng 2015, Bali, Indonesia,
April 25-26, 2015, 2015, pp. 61–70. [Online]. Available: https:
//doi.org/10.1007/978-981-13-1799-6 7

[27] M. Sevegnani and M. Calder, “BigraphER: Rewriting and analysis
engine for bigraphs,” in Computer Aided Verification - 28th Interna-
tional Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016,
Proceedings, Part II, 2016, pp. 494–501.

[28] B. Weyers, J. Bowen, A. Dix, and P. A. Palanque, Eds., The Hand-
book of Formal Methods in Human-Computer Interaction. Springer
International Publishing, 2017.

[29] Y.-W. Lin, Y.-B. Lin, M.-T. Yang, and J.-H. Lin, “ArduTalk: An Arduino
network application development platform based on IoTtalk,” IEEE
Systems Journal, vol. 13, no. 1, pp. 468–476, March 2019.

[30] Y.-B. Lin, H.-C. Tseng, Y.-W. Lin, and L.-J. Chen, “NB-IoTtalk: A
service platform for fast development of NB-IoT applications,” IEEE
Internet of Things Journal, vol. 6, no. 1, pp. 928–939, Feb 2019.

[31] Y.-B. Lin, M.-Z. Shieh, Y.-W. Lin, and H.-Y. Chen, “MapTalk: mo-
saicking physical objects into the cyber world,” Cyber-Physical Systems,
vol. 4, no. 3, pp. 156–174, 2018.

[32] Y.-B. Lin, L.-K. Chen, M.-Z. Shieh, Y.-W. Lin, and T.-H. Yen, “Cam-
pusTalk: IoT devices and their interesting features on campus applica-
tions,” IEEE Access, vol. 6, pp. 26 036–26 046, 2018.

[33] G. Conforti, D. Macedonio, and V. Sassone, “Static BiLog: a unifying
language for spatial structures,” Fundamenta Informaticae, vol. 80, no.
1-3, pp. 91–110, 2007.

[34] B. Archibald and M. Sevegnani, “BigraphTalk source code,” May
2019. [Online]. Available: https://doi.org/10.5281/zenodo.3240171

[35] A. Gassara, I. B. Rodriguez, M. Jmaiel, and K. Drira, “Executing
bigraphical reactive systems,” Discrete Applied Mathematics, vol. 253,
pp. 73–92, 2019, 14th Cologne-Twente Workshop on Graphs and
Combinatorial Optimization (CTW 2016).

[36] Y.-W. Lin, Y.-B. Lin, C.-Y. Hsiao, and Y.-Y. Wang, “IoTtalk-RC: Sensors
as universal remote control for aftermarket home appliances,” IEEE
Internet of Things Journal, vol. 4, no. 4, pp. 1104–1112, Aug 2017.

[37] M. Sevegnani and M. Calder, “Bigraphs with sharing,” Theor. Comput.
Sci., vol. 577, pp. 43–73, 2015.

[38] N. Bencomo, S. Götz, and H. Song, “Models@run.time: a guided tour
of the state of the art and research challenges,” Software and Systems
Modeling, vol. 18, no. 5, pp. 3049–3082, 2019. [Online]. Available:
https://doi.org/10.1007/s10270-018-00712-x

Blair Archibald is a Research Associate at the
University of Glasgow, where he previously obtained
his Ph.D. His research interests include systems
modelling with bigraphs, parallelising large combi-
natorial search problems, and sensor networks.

https://allseenalliance.org/
https://allseenalliance.org/
http://www.onem2m.org/
https://doi.org/10.1016/j.cl.2015.06.001
https://nodered.org/
https://doi.org/10.1007/978-3-030-00856-7_25
https://doi.org/10.1109/EUC.2014.53
https://doi.org/10.1007/978-981-13-1799-6_7
https://doi.org/10.1007/978-981-13-1799-6_7
https://doi.org/10.5281/zenodo.3240171
https://doi.org/10.1007/s10270-018-00712-x

14

Min-Zheng Shieh received the B.S. and M.S. de-
grees in Computer Science and Information Engi-
neering and the Ph.D. degree in Computer Science
and Engineering, all from National Chiao Tung
University, Taiwan, in 2003, 2004 and 2011, re-
spectively. From 2012 to 2016, he served as an
assistant research fellow of the Information and
Communication Technology Laboratories, National
Chiao Tung University. Since 2016, he has been
an assistant professor of Information Technology
Service Center at National Chiao Tung University.

His main research interests include computational complexity, algorithms,
coding theory and Internet of Things.

Yu-Hsuan Hu received the B.S. degree from the
Department of Computer Science and Information
Engineering, National Taipei University, Taipei, Tai-
wan, in 2014. She is currently pursuing the M.S.
degree at the Department of Computer Science,
National Chiao Tung University, Hsinchu, Taiwan.
Her research interests include operating systems and
Internet of Things.

Michele Sevegnani is Lecturer in Computing Sci-
ence at the University of Glasgow. He received a
PhD in Computing Science from the University of
Glasgow, Scotland in 2012 and an MSc in Bioin-
formatics jointly from the universities of Edinburgh
(Scotland) and Trento (Italy) in 2008. He is one of
the leading researchers in bigraph theory and appli-
cations, especially reasoning about safety, reliability
and predictability of location-aware, event-based,
systems that are deployed and were not designed
with reasoning in mind.

Yi-Bing Lin (M’96-SM’96-F’03) is Winbond
Chair Professor of National Chiao Tung University
(NCTU). He received his Bachelor’s degree from
National Cheng Kung University, Taiwan, in 1983,
and his Ph.D. from the University of Washington,
USA, in 1990. From 1990 to 1995 he was a Research
Scientist with Bellcore (Telcordia). He then joined
NCTU in Taiwan, where he remains. In 2010, Lin
became a lifetime Chair Professor of NCTU, and in
2011, the Vice President of NCTU. During 2014 –
2016, Lin was Deputy Minister, Ministry of Science

and Technology, Taiwan. Since 2016, Lin has been appointed as Vice
Chancellor, University System of Taiwan (for NCTU, NTHU, NCU, and
NYM). Lin is AAAS Fellow, ACM Fellow, IEEE Fellow, and IET Fellow.

	Introduction
	IoTtalk
	Bigraphs
	Modelling IoTtalk with Bigraphs
	Mapping IoTtalk to Bigraphs
	Connection Perspective
	Typechecking Perspective

	Detecting Forbidden Configurations
	Type Safety

	Implementation
	Evaluation
	Discussion
	Additional Property Analysis
	Runtime Monitoring
	Model Driven User Interface Control

	Conclusion
	Appendix
	Format of messages to BigraphTalk
	Format of messages to IoTtalk

	References
	Biographies
	Blair Archibald
	Min-Zheng Shieh
	Yu-Hsuan Hu
	Michele Sevegnani
	Yi-Bing Lin

