10,223 research outputs found

    Context guided belief propagation for remote sensing image classification.

    Get PDF
    We propose a context guided belief propagation (BP) algorithm to perform high spatial resolution multispectral imagery (HSRMI) classification efficiently utilizing superpixel representation. One important characteristic of HSRMI is that different land cover objects possess a similar spectral property. This property is exploited to speed up the standard BP (SBP) in the classification process. Specifically, we leverage this property of HSRMI as context information to guide messages passing in SBP. Furthermore, the spectral and structural features extracted at the superpixel level are fed into a Markov random field framework to address the challenge of low interclass variation in HSRMI classification by minimizing the discrete energy through context guided BP (CBP). Experiments show that the proposed CBP is significantly faster than the SBP while retaining similar performance as compared with SBP. Compared to the baseline methods, higher classification accuracy is achieved by the proposed CBP when the context information is used with both spectral and structural features

    BiRA-Net: Bilinear Attention Net for Diabetic Retinopathy Grading

    Full text link
    Diabetic retinopathy (DR) is a common retinal disease that leads to blindness. For diagnosis purposes, DR image grading aims to provide automatic DR grade classification, which is not addressed in conventional research methods of binary DR image classification. Small objects in the eye images, like lesions and microaneurysms, are essential to DR grading in medical imaging, but they could easily be influenced by other objects. To address these challenges, we propose a new deep learning architecture, called BiRA-Net, which combines the attention model for feature extraction and bilinear model for fine-grained classification. Furthermore, in considering the distance between different grades of different DR categories, we propose a new loss function, called grading loss, which leads to improved training convergence of the proposed approach. Experimental results are provided to demonstrate the superior performance of the proposed approach.Comment: Accepted at ICIP 201
    • …
    corecore