4 research outputs found

    Reconsidering the Relationship between Cloud Computing and Cloud Manufacturing

    Get PDF
    International audienceHistory shows many relations between computer science and manufacturing processes, starting with the initial idea of " digital manufacturing " in the 70's. Since then, advances in computer science have given birth to the Cloud Computing (CC) paradigm, where computing resources are seen as a service offered to various end-users. Of course, CC has been used as such to improve the IT infrastructure associated to a manufacturing infrastructure, but its principles have also inspired a new manufacturing paradigm Cloud Manufacturing (CMfg) with the perspective of many benefits for both the manufacturers and their customers. However, despite the usefulness of CC for CMfg, we advocate that considering CC as a core enabling technology for CMfg, as is often put forth in the literature, is limited and should be reconsidered. This paper presents a new core-enabling vision toward CMfg, called Cloud Anything (CA). CA is based on the idea of abstracting low-level resources, beyond computing resources, into a set of core control building blocks providing the grounds on top of which any domain could be " cloudified "

    Using statistical-model-checking-based simulation for evaluating the robustness of a production schedule

    Get PDF
    Published in Service Orientation in Holonic and Multi-Agent Manufacturing, Borangiu T., Trentesaux D., Thomas A., Cardin O. (eds). Studies in Computational Intelligence, vol 762, pp. 345-357, Springer, ChamInternational audienceIndustry 4.0 implies new scheduling problems linked to the optimal using of flexible resources and to mass customisation of products. In this context, first research results show that Discrete Event Systems models and tools are a relevant alternative to the classical approaches for modelling scheduling problems and for solving them. Moreover, the challenges of the industry 4.0 mean taking into account the uncertainties linked to the mass customisation (volume and mix of the demand) but also to the states of the resources (failures, operation durations,. . .). The goal of this paper is to show how it is possible to use the simulation based on statistical model checking for taking into account these uncertainties and for evaluating the robustness of a given schedule

    Assistance in Model Driven Development: Toward an Automated Transformation Design Process

    Get PDF
    Model driven engineering aims to shorten the development cycle by focusing on abstractions and partially automating code generation. We long lived in the myth of automatic Model Driven Development (MDD) with promising approaches, techniques, and tools. Describing models should be a main concern in software development as well as model verification and model transformation to get running applications from high level models. We revisit the subject of MDD through the prism of experimentation and open mindness. In this article, we explore assistance for the stepwise transition from the model to the code to reduce the time between the analysis model and implementation. The current state of practice requires methods and tools. We provide a general process and detailed transformation specifications where reverse-engineering may play its part. We advocate a model transformation approach in which transformations remain simple, the complexity lies in the process of transformation that is adaptable and configurable. We demonstrate the usefulness, and scalability of our proposed MDD process by conducting experiments. We conduct experiments within a simple case study in software automation systems. It is both representative and scalable. The models are written in UML; the transformations are implemented mainly using ATL, and the programs are deployed on Android and Lego EV3. Last we report the lessons learned from experimentation for future community work

    Service Orientation in Holonic and Multi-Agent Manufacturing: Proceedings of SOHOMA 2017

    No full text
    Proceedings of the 7th edition of the International Workshop “Service Orientation in Holonic and Multi-agent Manufacturing – SOHOMA’17”, Nantes, France, October 19-20, 2017, Studies in Computational Intelligence, Vol. 762, Springer International Publishing 2018.International audienceThis book gathers the peer-reviewed papers presented at the seventh edition of the international workshop "Service Orientation in Holonic and Multi-Agent Manufacturing - SOHOMA'17", held on October 19-20, 2017 and organized by the University of Nantes, France in collaboration with the CIMR Research Centre in Computer Integrated Manufacturing and Robotics at the University Politehnica of Bucharest, Romania, the LAMIH Laboratory of Industrial and Human Automation Control, Mechanical Engineering and Computer Science at the University of Valenciennes and Hainaut-Cambrésis, France and the CRAN Research Centre for Automatic Control, Nancy at the University of Lorraine, France. The main objective of SOHOMA'17 was to foster innovation in smart and sustainable manufacturing and logistics systems and in this context to promote concepts, methods and solutions addressing trends in service orientation of agent-based control technologies with distributed intelligence.The book is organized in eight parts, each with a number of chapters describing research in current domains of the digital transformation in manufacturing and trends in future service and computing oriented manufacturing control: Part 1: Advanced Manufacturing Control, Part 2: Big Data Management, Part 3: Cyber-Physical Production Systems, Part 4: Cloud- and Cyber-Physical Systems for Smart and Sustainable Manufacturing, Part 5: Simulation for Physical Internet and Intelligent & Sustainable Logistics Systems, Part 6: Formal Methods and Advanced Scheduling for Future Industrial Systems, Part 7: Applications and Demonstrators, Part 8: Production and Logistic Control Systems. The contributions focus on how the digital transformation, such as the one advocated by "Industry 4.0" or "Industry of the future" concepts, can improve the maintainability and the sustainability of manufacturing processes, products, and logistics. Digital transformation relates to the interaction between the physical and informational worlds and is realized by virtualization of products, processes and resources managed as services
    corecore