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Using Statistical-Model-Checking-Based
Simulation for Evaluating the Robustness of a
Production Schedule

Sara Himmiche, Alexis Aubry, Pascale Marangé, Marie Duflot-Kremer,
Jean-François Pétin

Abstract Industry 4.0 implies new scheduling problems linked to the optimal using
of flexible resources and to mass customisation of products. In this context, first
research results show that Discrete Event Systems models and tools are a relevant
alternative to the classical approaches for modelling scheduling problems and for
solving them. Moreover, the challenges of the industry 4.0 mean taking into account
the uncertainties linked to the mass customisation (volume and mix of the demand)
but also to the states of the resources (failures, operation durations, . . . ). The goal
of this paper is to show how it is possible to use the simulation based on statistical
model checking for taking into account these uncertainties and for evaluating the
robustness of a given schedule.

Introduction

After the mechanisation, started in the middle of the XVIIIth century, the mass pro-
duction and the electrification, at the end of the XIXth and finally the usage of com-
puters and automation, at the end of XXth, the concept of Industry 4.0 assumes that
we are at the beginning of a fourth industrial revolution. This revolution is based on
the massive digitalisation and the new Information and Communication Technolo-
gies for facilitating the emergence of “smart factories”. However, its enforcement
highlights new challenges dealing with the management and control of the produc-
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tion systems. In fact, this new paradigm offers, of course, new possibilities: flexibil-
ity and agility of production resources, communication capabilities of the resources
between them and with their environment, local capability of decision (by the re-
source and/or by the product). However, the usage of these new capabilities leads
to new issues like the mass customisation of the products and needs new control
strategies of the production.

These new abilities imply also that the production systems of the future will have
as intrinsic characteristics: uncertainties on the demand (volume and mix) or even
on their fabrication recipes and a need of optimal using of the resources flexibil-
ity. To make it possible, it is necessary to challenge the classical control strategies,
which often assume that the predicted demand is certain, that the manufacturing
routes are perfectly defined and that resources are always available for computing
a centralised production schedule – a global allocation of the production operations
to the resources and definition of the starting and completion dates of the operations
by satisfying the constraints of the considered system.

In this context, the classical approaches for scheduling, mainly based on opera-
tions research (mathematical programming, metaheuristics. . . ) become less efficient
because they often consider a stable environment without taking into account the
dynamics of the system and its perturbations.

The community of Discrete Event Systems (DES) precisely studies concepts for
modelling systems with real time and random aspects, offering a modelling and
analysing power that is appreciable. The methods and languages based on the DES
theory became in fact a realistic alternative to classical methods for scheduling the
production [10, 14].

The objective of this article is to present an approach based on DES models and
tools for evaluating the robustness of a production schedule subject to uncertainties
on the operations durations on the machines.

The remaining of the article is organised in five sections. The next section is ded-
icated to the presentation of the production scheduling problem that we want to ad-
dress. In the second section, the concept of robustness is developed and a robustness
definition is proposed for dealing with perturbations that are modelled by stochas-
tic data. The proposed approach for evaluating the robustness level and the DES
models that supports this approach are presented in the third section. An academic
example is used in the fourth section for illustrating and discussing the approach.
Conclusions and Perspectives are given in the last section.

1 Definition of the problematic

1.1 The general scheduling problem

Classically, scheduling the production consists in (i) allocating the production oper-
ations to resources and (ii) sequencing the operations on these resources (defining
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the order of the operations), also satisfying the constraints defined by the considered
production system and optimising a criterion (the total duration, the number of late
operations. . . ). Moreover, when the duration of each operation is considered as per-
fectly known and static, then it is possible to fix the starting and completion dates
of each operation.

The most common criterion is the total duration of the schedule (the makespan,
classically denoted as Cmax). Among the common constraints are the precedence
constraints that fix the sequence of operations for each product route.

Regarding its definition, the scheduling problem can be considered as an opti-
misation problem. Thus, the classical operational research tools (mathematical pro-
gramming, metaheuristics. . . ) have for a long time been the only tools used for
solving these problems.

The classical approach for solving this type of problem is the predictive ap-
proach: an off-line algorithm – the predictive algorithm – computes an optimal
schedule S∗I for a predicted scenario I (fixing the value of each input parameter of
the problem), considered as certain and static, and guarantees a local performance
measured by a criterion z and valued by z∗I on I. The performance z∗I is only guar-
anteed for this scenario. However, the production system is naturally submitted to
perturbations, and thus, the schedule S∗I is actually applied to a realised scenario
I′ that is different from the predicted scenario I. Eventually, the application of the
schedule S∗I to I′ can lead to constraints violations, making the schedule no more
feasible for I′. Moreover, the real measured performance z(S∗I , I′) can be really far
from the predicted one z∗I .

The limits of the classical approach are clearly highlighted here: it does not guar-
antee any performance if the realised scenario gets away from the predicted sce-
nario. The need to take into account the perturbations and to propose an approach
that is able to compute schedules with good performances despite this perturbations
is thus a critical issue.

1.2 Scheduling flexible manufacturing systems

A workshop is defined by a set J of products that have to be processed on a set M
of machines (the number of machines is given by card(M) and is denoted as M ).
Each product j has to follow a production route OJ

j that defines a set of operations
to be executed for processing the product j. The execution of the operation o jk
(kth operation of the route OJ

j) needs a machine m that must be qualified for this
operation, occupying this machine during d jkm time units.

The global set of operations available in the workshop is given by OJ =
⋃
j∈J

OJ
j

and the total number of operations in the workshop is thus given by card(OJ) and is
denoted as O).

There exist different types of classical workshops depending of the possible flows
of products: Flow-Shop, Job-shop, Open-shop. According to the type of workshop,
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some precedence constraints between the operations are existing, defined by the
routes O j

j.
Regarding the criterion z, we will consider only the minimisation of the total

duration of the schedule (classically denoted as Cmax). That means that z=Cmax(S, I)
and assesses the total duration of the schedule S on the scenario I (that fixes the
duration of each operation on the machines).

1.3 The uncertainties

The execution duration of an operation o jk on a machine m for which it is qualified
can be rarely known with certainty. A reference duration dre f

jkm can often be given:
it corresponds to the duration given by the methods engineers. In practice, we will
consider that the real execution duration is a stochastic data following a probabilistic
distribution with expected value dre f

jkm.

On the contrary, the routes O j
j are supposed to be perfectly known and without

variation and the machines are supposed to be without failures.

2 Robustness in scheduling

Tackling uncertainty in scheduling is not a new problem. We can distinguish two
strategies when dealing with perturbations in scheduling that are complementary:

• Trying to take into account the perturbations - proactively - before the production
for building a robust schedule

• Build an on-line schedule taking into account the real state of the system and the
real input parameters

Robust scheduling consists in - according to predefined perturbations (meaning
that perturbations are seen here as deterministic uncertainty) and their model - build-
ing a schedule that is able to guarantee some performances despite the modelled un-
certainties. Performances that must be guaranteed clearly depends on the considered
problem. But as an example, these performances could be a deadline to be respected
despite uncertainty on the operations duration.

In the first chapter of [5], the robustness is defined as follows: a schedule is robust
if its performance is rather insensitive to the data uncertainties. This definition, even
if it has the merit to make the consensus, remains poorly precise insofar as it needs
to define what means “to be rather sensitive to”. That means that some metrics for
characterising this sensitiveness are necessary.

In the case where the uncertain data are modelled as random variables (possibly
in given intervals), we propose to use the following robustness definition.
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Definition 1. A schedule S is conditional-robust face to uncertainties modelled by
a vector of random variables I if its probability of satisfying a robustness condition
is higher than a given threshold Plim. This can be mathematically formalised by the
following condition:

Pr(z(S, I)≤ Lλ )≥ Plim (1)

In this definition, z(S, I) ≤ Lλ is the robustness condition that is expected to be
satisfied despite the uncertainties on I. Typically, Lλ and Plim must be defined by
the decision maker who first defines Lλ as the expected performance and then Plim
as the minimal desired probability for satisfying the robustness condition. In the
context of our problem, as defined previously, z(S, I) = Cmax(S, I). z assesses the
global duration of the schedule S for the scenario I = {d jkm} jkm that is a vector of
random durations d jkm for the operation o jk on the different machines. Moreover,
it is assumed that it is necessary that the global duration of the schedule does not
exceed a given deadline d̃ despite these uncertainties. The robustness definition 1
is then true if the robustness condition above has a probability higher than a given
probability Plim when the durations d jkm follow a given probability distribution. This
can be expressed by the following condition: Pr(Cmax(S, I)≤ d̃)≥ Plim.

3 A DES-based approach for evaluating the robustness

The objective of this section is to show how models based on Stochastic Timed
Automata and associated Statistical Model Checking can be used for evaluating the
robustness level of a given schedule (definition 1), and how it is possible to use these
models for helping the decision maker to decide between several schedules.

3.1 Approach overview

The proposed approach includes three steps (see figure 1).

• The first step consists in computing a deterministic schedule taking into account
the information of the workshop (qualifications of the machines, reference oper-
ations durations on the machines, routes of the products) that are here considered
as certain and static. The computation of this schedule can be done manually by
an expert, or using a classical approach (metaheuristics, Mixed-Integer Linear
Programming . . . ), or even using DES models and tools as in [3, 14, 17, 13].
This step is not addressed in this paper.

• The second step consists, on the schedule obtained after executing step 1, and
considering uncertainties on the operations durations, to evaluate the robustness
level determined by Pr(Cmax(S, I)≤ d̃) with I = {d jkm} jkm the random vector of
operations durations. The deadline d̃ is a reasonable time limit fixed by the deci-
sion maker. Its value can be fixed according to a reference duration that can be
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Fig. 1 Procedure for evaluating the robustness of a schedule

the makespan of the evaluated schedule on a reference scenario Ire f = {dre f
jkm} jkm

denoted by Cre f
max (we accept to get away from a reference value but without ex-

ceeding X%) or can be an arbitrary value corresponding to the horizon of the
schedule for instance.

• The third step consists, for the initial schedule of step 1, for the same uncertain-
ties as in step 2, and for a given desired robustness level Plim, in determining the
shortest deadline d̃min that satisfies Pr(Cmax(S, I)≤ d̃min)≥ Plim.

3.2 Models

In order to implement the procedure presented in the previous section, it is necessary
to have models that can represent: the different states of the resources, the operations
routes for the products, the allocation and sequencing of the operations according to
the given schedule, the uncertainties on the operations durations. Moreover, it will
be necessary to find a way for evaluating the probability to satisfy some properties
in order to assess, at the end, the robustness level of the schedule.

There exist several DES tools for satisfying such modelling requirements. We
can cite Stochastic Automata [12, 6], Stochastic Petri Nets [2, 11] and Stochastic
Automata Networks [15, 16].

3.2.1 Stochastic Timed Automata

Stochastic Timed Automata (STA) [7] are derived from the class of Timed Automata
defined in [1]. Informally, a timed automaton as used in UppAal [4] is a model with
a finite number of locations, and a finite number of real valued clocks. Discrete and
instantaneous transitions can lead from one location to another. Those transitions
can be equipped with guards (conditions on clocks that need to be enabled to fire
the transition), resets (a subset of clocks whose value will be set to zero on firing
the transition) and synchronisation labels (in order to synchronise two automata
together). They can also include integer valued variables in guards and updates.
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The STA give a probabilistic semantics to TA by probabilistically resolving the
deterministic choices in the system, using probabilistic choice between several en-
abled transitions, and probabilistic distributions (uniform or exponential) to chose
the delay before firing the next transition. This model is precisely the one imple-
mented in the statistical model checker UppAal SMC. In the following, we will
describe our models using UppAal SMC syntax.

In the following of the article, the localities will be noted in bold case, the events
will noted in italic case, the guards and the invariants will be noted in [] and the
updates will be noted in bold case and underlined.

3.2.2 STA models for a schedule

In order to evaluate the robustness of a given schedule, it is first needed to model
this schedule. Its characteristics are:

• an allocation of each operation to a unique machine,
• the sequencing of the operations on the machines

Moreover, this schedule has to be admissible, i.e. to satisfy the precedence con-
straints defined by the routes of the products. In order to model a schedule, two
generic models (model patterns) have been defined. According to the solved prob-
lem, these patterns are instantiated as many times as necessary.

The first model given in figure 2 is an instantiation of the operation pattern and
represents the evolution of the states of the operation according to the route of the
product it is linked to, and according to the sequencing in the machine allocated to
this operation. The operation pattern is based on previous works [9, 13]. We need a
copy of this pattern for each operation of each product. The behaviour of the model
is as follows.

• In the locality Waiting to be performed, the operation is waiting until its en-
abling conditions (in green) are satisfied. The model can evolve when the pre-
vious operation in the route of the product and the previous operation in the
sequence on the machine (defined by the schedule) have been completed and if
the product is available (not undergoing another operation).

• If this guard is satisfied then the operation sends a request (requested[ordo[i].M])
to the machine allocated, according to the schedule, for executing this operation.
Moreover, the status of the product is set to unavailable and the operation now
waits to be completely executed in the locality Waiting to be executed.

• Upon receiving an event (executed[i]) telling that the machine has completed the
operation, the model moves to the final locality End of opeation, and updates
variables in order to show that the product is available and the operation has been
completed.

The second model given in figure 3 is an instantiation of the machine pattern and
represents the behaviour of a machine when executing an operation.
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Fig. 2 Instantiation of an operation pattern using UppAal

Fig. 3 Model pattern β m for the machine m

The machine pattern has to be instantiated for each machine. It evolves as fol-
lows:

• In the locality idle, the machine m is waiting for the request requested[m], which
means that an operation is asking to be executed. As the machine is available,
it accepts the operation, set its status to occupied, stores the id of the operation,
resets the local clock to compute the execution time.

• The model moves towards the locality Operation execution, and remains there
until the operation is completed, which takes a time exponentially distributed
which parameter λ = 1

dre f
jkm−dmin

jkm
where dmin

jkm is the minimal duration of the opera-

tion o jk on the machine m.

3.3 Evaluation of the robustness

Based on the previous models and using the model checker UppAal, the steps 2 and
3 of the figure 1 are implemented.

Concerning the verification of probabilistic systems, two families of model
checkers can be distinguished. So called (numerical) probabilistic model-checking
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consists in computing, as precisely as one wants, the exact value of a probabil-
ity, by using numerical methods based on matrix calculation. The statistical model-
checking is based on the sampling of executions in order to estimate a probability
by using Monte-Carlo style methods.

The main advantage of the first method is its precision regarding the obtained
results (without the risks linked to the usage of statistical methods). However, the
second method avoids the combinatory explosion because it does not need to build
the complete state space of the system. Moreover, it permits to have richer models
(regarding the evolution of the variables or the probability distributions).

In order to answer to the initial issue, i.e. taking into account both time aspects
inherent to the scheduling problem and the variability of the system, a tool able
to catch deterministic timed activities but also able to introduce some stochastic
aspects in other delays (as the treatment of the operations durations) was needed.
Regarding these aspects, it was natural to select UppAal SMC [7], a tool that ac-
cepts the timed models initially verified by UppAal, but also designed for adding a
probabilistic semantics to timed models.

For the robustness level (step 2 of the procedure), the question asked to the model
checker is: What is the probability, within deadline d̃ to have completed all the
operations.

Pr[≤ d̃](<> f orall(i : int[1,NbOp−1])Ordo[i].OpExec == 1) (2)

For step 3, the idea is to find the smallest value dmin for which the probability to
complete all the operation within dmin time units is higher than a fixed value Plim.
That means computing the smallest value of d̃ for which the following property is
satisfied:

Pr[≤ d̃](<> f orall(i : int[1,NbOp−1])Ordo[i].OpExec)≥ Plim (3)

In order to compute this value, a binary search algorithm can be used. The idea
is to start with an interval of the possible values of dmin and to reduce iteratively this
interval until a sufficient precision for the value of dmin is reached. This algorithm
consists in:

1. defining a first interval [din f ;dsup] in which the value of dmin is guaranteed to be.
din f can be fixed to Cre f

max and dsup can be fixed to the sum of the durations of all
the operations,

2. reducing the size of the interval [din f ;dsup] by picking the middle value, checking
the property (3) with this middle value (d̃ =

din f +dsup
2 ),

3. if the property is satisfied, updating the interval [din f ;dsup] with [din f ; din f +dsup
2 ],

else updating the interval with [
din f +dsup

2 ;dsup],
4. going back to the step 2 of the algorithm with this updated interval (until a given

precision is reached).
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Fig. 4 Possible schedule in 32 time units

4 Experiments

The approach, presented in the previous section, has been experimented on an aca-
demic example taken from [8] and adapted for taking into account the uncertainties
on the operations durations. The objective of this example is to schedule eight prod-
ucts. The workshop contains a CNC lathe (M1), a grinding machine (M2), three
milling machines (M3 to M5) and two furnaces (M6 and M7). The characteristics
of the products to be completed and the workshop are detailed in the table 1.

Product Operation Ressource dmin
jkm dre f

jkm Product Operation Resource dmin
jkm dre f

jkm
1 o1 1 CNC lathe 4 5 6 o6 1 milling machine 2 3
1 o1 2 milling machine 4 6 6 o6 2 CNC lathe 2 3
1 o1 3 furnace 1 2 6 o6 3 furnace 4 6
2 o2 1 milling machine 4 6 6 o6 4 milling machine 1 2
2 o2 2 furnace 1 2 6 o6 5 CNC lathe 3 4
2 o2 3 milling machine 4 6 6 o6 6 grinding machine 3 4
2 o2 4 CNC lathe 1 2 6 o6 7 CNC lathe 5 7
2 o2 5 furnace 5 7 7 o7 1 milling machine 1 1
3 o3 1 milling machine 3 4 7 o7 2 grinding machine 3 4
3 o3 2 furnace 8 10 7 o7 3 furnace 1 2
3 o3 3 milling machine 1 1 7 o7 4 milling machine 2 3
4 o4 1 grinding machine 4 6 7 o7 5 furnace 6 8
4 o4 2 CNC lathe 1 2 8 o8 1 milling machine 4 5
4 o4 3 milling machine 4 6 8 o8 2 CNC lathe 4 5
4 o4 4 grinding machine 1 2 8 o8 3 milling machine 4 6
5 o5 1 milling machine 4 5 8 o8 4 furnace 2 3
5 o5 2 grinding machine 4 6 8 o8 5 milling machine 4 6
5 o5 3 furnace 1 2

Table 1 Route of the products and characteristics of the machines

Using the method given in [13] and considering a reference operation duration
dre f

jkm (given in the table 1), two schedules can be obtained for instance. They are
represented in the figures 4 and 5. Their respective global duration have the same
magnitude. In order to help the decision maker to decide between these two sched-
ules, the one to be executed in the workshop, the approach presented in the previous
section has been used for each schedule. The robustness level has been first eval-
uated for each schedule considering that the deadline d̃ has been fixed to 110% of
the reference duration fixed by Cmax(S, Ire f ): 35 for the first schedule and 42 for the
second one. That means the decision maker accepts that the duration of the schedule
can increase of 10%, but no more.

In order to evaluate the robustness level of the two schedules according to the
desired deadline d̃, the following property has been tested on UppAal SMC:
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Fig. 5 Possible schedules in 38 time units

Pr[<= 35(resp.42)](<> f orall(i : int[1,NbOp−1])Ordo[i].OpExec == 1) (4)

For the first schedule, the obtained probability is 25% and for the second schedule
it is 50%. That means that, despite the uncertainties on the operations duration,
when executing the second schedule, the products have a probability of 50% to be
completed before the desired deadline (42 units of times).

In order to evaluate the smallest deadline that allows a robustness level of 85%, a
binary search algorithm has been executing by iteratively test the following property
UppAll SMC:

Pr[≤ date accept](<> f orall(i : int[1,NbOp−1])Op(i).End operation o jk)≥ 0,85
(5)

For the first schedule, the obtained smallest acceptable deadline is 42 time units
and for the second schedule the obtained smallest acceptable deadline is 47 time
units. That means that the decision maker has to accept to increase the deadline to
47 time units for obtaining a robustness level of 85%.

Even though the second schedule ends in 38 time units (later than the first one),
the first property shows that it is more robust when considering the uncertainties on
operations duration. This conclusion is aligned with previous works that show that
the most robust schedule is rarely the optimal one (compromise between optimality
and robustness).

5 Conclusion

This paper proposed an approach based on Statistical Model-Checking of Stochastic
Timed Automata (STA) for evaluating the robustness of one schedule face to uncer-
tainties on the operations durations. This approach first proposes some modelling
patterns in STA for modelling a schedule and then proposed to use the Statisti-
cal Model-Checking for formally evaluating the robustness level of the modelled
schedule. The models that have been proposed are independent of the type of the
workshop to be scheduled. This makes the approach an interesting alternative to
classical approaches that are often dedicated to the scheduling problem.

In the future, this approach must be extended and enriched for taking into ac-
count other types of perturbations (the failures for instance) and other probability
distributions. This approach starts with a given schedule to be evaluated. The next
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step is to propose a method for computing a robust schedule from scratch according
to the modelled perturbations and to a desired robustness level.
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