115 research outputs found

    Event-based Simultaneous Localization and Mapping: A Comprehensive Survey

    Full text link
    In recent decades, visual simultaneous localization and mapping (vSLAM) has gained significant interest in both academia and industry. It estimates camera motion and reconstructs the environment concurrently using visual sensors on a moving robot. However, conventional cameras are limited by hardware, including motion blur and low dynamic range, which can negatively impact performance in challenging scenarios like high-speed motion and high dynamic range illumination. Recent studies have demonstrated that event cameras, a new type of bio-inspired visual sensor, offer advantages such as high temporal resolution, dynamic range, low power consumption, and low latency. This paper presents a timely and comprehensive review of event-based vSLAM algorithms that exploit the benefits of asynchronous and irregular event streams for localization and mapping tasks. The review covers the working principle of event cameras and various event representations for preprocessing event data. It also categorizes event-based vSLAM methods into four main categories: feature-based, direct, motion-compensation, and deep learning methods, with detailed discussions and practical guidance for each approach. Furthermore, the paper evaluates the state-of-the-art methods on various benchmarks, highlighting current challenges and future opportunities in this emerging research area. A public repository will be maintained to keep track of the rapid developments in this field at {\url{https://github.com/kun150kun/ESLAM-survey}}

    Non-Linearity Analysis of Depth and Angular Indexes for Optimal Stereo SLAM

    Get PDF
    In this article, we present a real-time 6DoF egomotion estimation system for indoor environments using a wide-angle stereo camera as the only sensor. The stereo camera is carried in hand by a person walking at normal walking speeds 3–5 km/h. We present the basis for a vision-based system that would assist the navigation of the visually impaired by either providing information about their current position and orientation or guiding them to their destination through different sensing modalities. Our sensor combines two different types of feature parametrization: inverse depth and 3D in order to provide orientation and depth information at the same time. Natural landmarks are extracted from the image and are stored as 3D or inverse depth points, depending on a depth threshold. This depth threshold is used for switching between both parametrizations and it is computed by means of a non-linearity analysis of the stereo sensor. Main steps of our system approach are presented as well as an analysis about the optimal way to calculate the depth threshold. At the moment each landmark is initialized, the normal of the patch surface is computed using the information of the stereo pair. In order to improve long-term tracking, a patch warping is done considering the normal vector information. Some experimental results under indoor environments and conclusions are presented

    Learning to Navigate the Energy Landscape

    Full text link
    In this paper, we present a novel and efficient architecture for addressing computer vision problems that use `Analysis by Synthesis'. Analysis by synthesis involves the minimization of the reconstruction error which is typically a non-convex function of the latent target variables. State-of-the-art methods adopt a hybrid scheme where discriminatively trained predictors like Random Forests or Convolutional Neural Networks are used to initialize local search algorithms. While these methods have been shown to produce promising results, they often get stuck in local optima. Our method goes beyond the conventional hybrid architecture by not only proposing multiple accurate initial solutions but by also defining a navigational structure over the solution space that can be used for extremely efficient gradient-free local search. We demonstrate the efficacy of our approach on the challenging problem of RGB Camera Relocalization. To make the RGB camera relocalization problem particularly challenging, we introduce a new dataset of 3D environments which are significantly larger than those found in other publicly-available datasets. Our experiments reveal that the proposed method is able to achieve state-of-the-art camera relocalization results. We also demonstrate the generalizability of our approach on Hand Pose Estimation and Image Retrieval tasks

    High Speed and High Dynamic Range Video with an Event Camera

    Full text link
    Event cameras are novel sensors that report brightness changes in the form of a stream of asynchronous "events" instead of intensity frames. They offer significant advantages with respect to conventional cameras: high temporal resolution, high dynamic range, and no motion blur. While the stream of events encodes in principle the complete visual signal, the reconstruction of an intensity image from a stream of events is an ill-posed problem in practice. Existing reconstruction approaches are based on hand-crafted priors and strong assumptions about the imaging process as well as the statistics of natural images. In this work we propose to learn to reconstruct intensity images from event streams directly from data instead of relying on any hand-crafted priors. We propose a novel recurrent network to reconstruct videos from a stream of events, and train it on a large amount of simulated event data. During training we propose to use a perceptual loss to encourage reconstructions to follow natural image statistics. We further extend our approach to synthesize color images from color event streams. Our network surpasses state-of-the-art reconstruction methods by a large margin in terms of image quality (> 20%), while comfortably running in real-time. We show that the network is able to synthesize high framerate videos (> 5,000 frames per second) of high-speed phenomena (e.g. a bullet hitting an object) and is able to provide high dynamic range reconstructions in challenging lighting conditions. We also demonstrate the effectiveness of our reconstructions as an intermediate representation for event data. We show that off-the-shelf computer vision algorithms can be applied to our reconstructions for tasks such as object classification and visual-inertial odometry and that this strategy consistently outperforms algorithms that were specifically designed for event data.Comment: arXiv admin note: substantial text overlap with arXiv:1904.0829

    Ego-motion Estimation Based on Fusion of Images and Events

    Full text link
    Event camera is a novel bio-inspired vision sensor that outputs event stream. In this paper, we propose a novel data fusion algorithm called EAS to fuse conventional intensity images with the event stream. The fusion result is applied to some ego-motion estimation frameworks, and is evaluated on a public dataset acquired in dim scenes. In our 3-DoF rotation estimation framework, EAS achieves the highest estimation accuracy among intensity images and representations of events including event slice, TS and SITS. Compared with original images, EAS reduces the average APE by 69%, benefiting from the inclusion of more features for tracking. The result shows that our algorithm effectively leverages the high dynamic range of event cameras to improve the performance of the ego-motion estimation framework based on optical flow tracking in difficult illumination conditions

    Global Localization based on Evolutionary Optimization Algorithms for Indoor and Underground Environments

    Get PDF
    Mención Internacional en el título de doctorA fully autonomous robot is defined by its capability to sense, understand and move within the environment to perform a specific task. These qualities are included within the concept of navigation. However, among them, a basic transcendent one is localization, the capacity of the system to know its position regarding its surroundings. Therefore, the localization issue could be defined as searching the robot’s coordinates and rotation angles within a known environment. In this thesis, the particular case of Global Localization is addressed, when no information about the initial position is known, and the robot relies only on its sensors. This work aims to develop several tools that allow the system to locate in the two most usual geometric map representations: occupancy maps and Point Clouds. The former divides the dimensional space into equally-sized cells coded with a binary value distinguishing between free and occupied space. Point Clouds define obstacles and environment features as a sparse set of points in the space, commonly measured through a laser sensor. In this work, various algorithms are presented to search for that position through laser measurements only, in contrast with more usual methods that combine external information with motion information of the robot, odometry. Therefore, the system is capable of finding its own position in indoor environments, with no necessity of external positioning and without the influence of the uncertainty that motion sensors typically induce. Our solution is addressed by implementing various stochastic optimization algorithms or Meta-heuristics, specifically those bio-inspired or commonly known as Evolutionary Algorithms. Inspired by natural phenomena, these algorithms are based on the evolution of a series of particles or population members towards a solution through the optimization of a cost or fitness function that defines the problem. The implemented algorithms are Differential Evolution, Particle Swarm Optimization, and Invasive Weed Optimization, which try to mimic the behavior of evolution through mutation, the movement of swarms or flocks of animals, and the colonizing behavior of invasive species of plants respectively. The different implementations address the necessity to parameterize these algorithms for a wide search space as a complete three-dimensional map, with exploratory behavior and the convergence conditions that terminate the search. The process is a recursive optimum estimation search, so the solution is unknown. These implementations address the optimum localization search procedure by comparing the laser measurements from the real position with the one obtained from each candidate particle in the known map. The cost function evaluates this similarity between real and estimated measurements and, therefore, is the function that defines the problem to optimize. The common approach in localization or mapping using laser sensors is to establish the mean square error or the absolute error between laser measurements as an optimization function. In this work, a different perspective is introduced by benefiting from statistical distance or divergences, utilized to describe the similarity between probability distributions. By modeling the laser sensor as a probability distribution over the measured distance, the algorithm can benefit from the asymmetries provided by these divergences to favor or penalize different situations. Hence, how the laser scans differ and not only how much can be evaluated. The results obtained in different maps, simulated and real, prove that the Global Localization issue is successfully solved through these methods, both in position and orientation. The implementation of divergence-based weighted cost functions provides great robustness and accuracy to the localization filters and optimal response before different sources and noise levels from sensor measurements, the environment, or the presence of obstacles that are not registered in the map.Lo que define a un robot completamente autónomo es su capacidad para percibir el entorno, comprenderlo y poder desplazarse en ´el para realizar las tareas encomendadas. Estas cualidades se engloban dentro del concepto de la navegación, pero entre todas ellas la más básica y de la que dependen en buena parte el resto es la localización, la capacidad del sistema de conocer su posición respecto al entorno que lo rodea. De esta forma el problema de la localización se podría definir como la búsqueda de las coordenadas de posición y los ángulos de orientación de un robot móvil dentro de un entorno conocido. En esta tesis se aborda el caso particular de la localización global, cuando no existe información inicial alguna y el sistema depende únicamente de sus sensores. El objetivo de este trabajo es el desarrollo de varias herramientas que permitan que el sistema encuentre la localización en la que se encuentra respecto a los dos tipos de mapa más comúnmente utilizados para representar el entorno: los mapas de ocupación y las nubes de puntos. Los primeros subdividen el espacio en celdas de igual tamaño cuyo valor se define de forma binaria entre espacio libre y ocupado. Las nubes de puntos definen los obstáculos como una serie dispersa de puntos en el espacio comúnmente medidos a través de un láser. En este trabajo se presentan varios algoritmos para la búsqueda de esa posición utilizando únicamente las medidas de este sensor láser, en contraste con los métodos más habituales que combinan información externa con información propia del movimiento del robot, la odometría. De esta forma el sistema es capaz de encontrar su posición en entornos interiores sin depender de posicionamiento externo y sin verse influenciado por la deriva típica que inducen los sensores de movimiento. La solución se afronta mediante la implementación de varios tipos de algoritmos estocásticos de optimización o Meta-heurísticas, en concreto entre los denominados bio-inspirados o comúnmente conocidos como Algoritmos Evolutivos. Estos algoritmos, inspirados en varios fenómenos de la naturaleza, se basan en la evolución de una serie de partículas o población hacia una solución en base a la optimización de una función de coste que define el problema. Los algoritmos implementados en este trabajo son Differential Evolution, Particle Swarm Optimization e Invasive Weed Optimization, que tratan de imitar el comportamiento de la evolución por mutación, el movimiento de enjambres o bandas de animales y la colonización por parte de especies invasivas de plantas respectivamente. Las distintas implementaciones abordan la necesidad de parametrizar estos algoritmos para un espacio de búsqueda muy amplio como es un mapa completo, con la necesidad de que su comportamiento sea muy exploratorio, así como las condiciones de convergencia que definen el fin de la búsqueda ya que al ser un proceso recursivo de estimación la solución no es conocida. Estos algoritmos plantean la forma de buscar la localización ´optima del robot mediante la comparación de las medidas del láser en la posición real con lo esperado en la posición de cada una de esas partículas teniendo en cuenta el mapa conocido. La función de coste evalúa esa semejanza entre las medidas reales y estimadas y por tanto, es la función que define el problema. Las funciones típicamente utilizadas tanto en mapeado como localización mediante el uso de sensores láser de distancia son el error cuadrático medio o el error absoluto entre distancia estimada y real. En este trabajo se presenta una perspectiva diferente, aprovechando las distancias estadísticas o divergencias, utilizadas para establecer la semejanza entre distribuciones probabilísticas. Modelando el sensor como una distribución de probabilidad entorno a la medida aportada por el láser, se puede aprovechar la asimetría de esas divergencias para favorecer o penalizar distintas situaciones. De esta forma se evalúa como difieren las medias y no solo cuanto. Los resultados obtenidos en distintos mapas tanto simulados como reales demuestran que el problema de la localización se resuelve con éxito mediante estos métodos tanto respecto al error de estimación de la posición como de la orientación del robot. El uso de las divergencias y su implementación en una función de coste ponderada proporciona gran robustez y precisión al filtro de localización y gran respuesta ante diferentes fuentes y niveles de ruido, tanto de la propia medida del sensor, del ambiente y de obstáculos no modelados en el mapa del entorno.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Fabio Bonsignorio.- Secretario: María Dolores Blanco Rojas.- Vocal: Alberto Brunete Gonzále

    A New Wave in Robotics: Survey on Recent mmWave Radar Applications in Robotics

    Full text link
    We survey the current state of millimeterwave (mmWave) radar applications in robotics with a focus on unique capabilities, and discuss future opportunities based on the state of the art. Frequency Modulated Continuous Wave (FMCW) mmWave radars operating in the 76--81GHz range are an appealing alternative to lidars, cameras and other sensors operating in the near visual spectrum. Radar has been made more widely available in new packaging classes, more convenient for robotics and its longer wavelengths have the ability to bypass visual clutter such as fog, dust, and smoke. We begin by covering radar principles as they relate to robotics. We then review the relevant new research across a broad spectrum of robotics applications beginning with motion estimation, localization, and mapping. We then cover object detection and classification, and then close with an analysis of current datasets and calibration techniques that provide entry points into radar research.Comment: 19 Pages, 11 Figures, 2 Tables, TRO Submission pendin
    corecore