1,093,172 research outputs found
Additional Suppression from High Density Effects
At high energies the saturation effects associated to the high parton density
should modify the behavior of the observables in proton-nucleus and
nucleus-nucleus scattering. In this paper we investigate the saturation effects
in the nuclear production and estimate the modifications in the energy
dependence of the cross section as well as in the length of the nuclear medium.
In particular, we calculate the ratio of to Drell-Yan cross sections
and show that it is strongly modified if the high density effects are included.
Moreover, our results are compared with the data from the NA50 Collaboration
and predictions for the RHIC and LHC kinematic regions are presented. We
predict an additional suppression associated to the high density
effects.Comment: 13 pages, 5 figures, version to be published in Eur. Phys. J.
Landholders’ Involvement in the Compulsory Acquisition of Land and Compensation Process in Bauchi, Nigeria
This study aims to assess landholder’s involvement in the compulsory acquisition of land on their satisfaction with the compensation process in Bauchi, Nigeria, to identify areas of weakness in the process and propose areas of improvement. The study adopted the use of a quantitative approach and data were collected through a questionnaire survey from 327 landholders affected by the compulsory acquisition and compensation exercise by the Bauchi State Government. The data collected were subjected to descriptive with mean ranking, frequency distribution. The study revealed that before the process of compulsory acquisition landholders were very well involved, during the process of compulsory acquisition they were also involved but at the compensation process, they were not involved at all. It recommended that Landholders should be involved not only in the process of compulsory acquisition but they should be involved in the process of compensation as it will minimize resistance to compulsory
Hot mantle upwelling across the 660 beneath Yellowstone
P-to-s receiver functions mapped to depth through P and S body-wave tomography models image continuous 410 and 660 km discontinuities beneath the area covered by USArray prior to the year 2011. Mean depths to the 410 and 660 km discontinuities of 410 and 656 km imply a mantle transition zone that is about 4 km thicker than the global average and hence has a slightly cooler mean temperature and/or enhanced water content. Compared to the mean 660 depth beneath this ~2000 km wide area, the 660 beneath the Yellowstone hotspot is deflected upward by 12–18 km over an area about 200 km wide. This is the most anomalous shallowing of the 660 imaged and its horizontal extent is similar to the area where P and S tomography image low-velocity mantle extending from the top of the transition zone to about 900 km depth. Together, these results indicate a high-temperature, plume-like upwelling extending across the 660. The depth of 410 km discontinuity beneath the Yellowstone region is within 5 km of the mean depth implying that the plume is vertically heterogeneous and possibly discontinuous. Tomography indicates a similar vertically heterogeneous thermal plume. The irregular plume structure may be intrinsic to the dynamics of upwelling through the transition zone, or distortion may be caused by subduction-induced mantle flow. Topography of the 410 and 660 confirms that subducted slabs beneath the western U.S. are highly segmented, as inferred from recent tomography studies. We find no evidence of regionally pervasive velocity discontinuities between 750 and 1400 km depth. The plume's depth of origin within the lower mantle remains uncertain
Solar System: Sifting through the debris
A quadrillion previously unnoticed small bodies beyond Neptune have been
spotted as they dimmed X-rays from a distant source. Models of the dynamics of
debris in the Solar System's suburbs must now be reworked.Comment: 3 pages, 1 figure; Nature News and Views on Chang et al. 2006,
Nature, 442, 660-66
El pensamiento multiplicativo en los primeros niveles: una investigación en curso
Este artículo muestra los resultados parciales de un estudio empírico sobre el desarrollo de pensamiento multiplicativo en los primeros niveles escolares. Concretamente, se han realizado entrevistas a niños de tercer curso de segundo ciclo de Educación Infantil (cinco años) en las que se han planteado, mediante situaciones manipulables, varios problemas de división que no podían ser resueltos mediante reparto, así como algunas preguntas sobre pensamiento relacional (de tipo proporcional)
Upper mantle P velocity structure beneath the Midwestern United States derived from triplicated waveforms
Upper mantle seismic velocity structures in both vertical and horizontal directions are key to understanding the structure and mechanics of tectonic plates. Recent deployment of the USArray Transportable Array (TA) in the Midwestern United States provides an extraordinary regional earthquake data set to investigate such velocity structure beneath the stable North American craton. In this paper, we choose an M_w5.1 Canadian earthquake in the Quebec area, which is recorded by about 400 TA stations, to examine the P wave structures between the depths of 150 km to 800 km. Three smaller Midwestern earthquakes at closer distance to the TA are used to investigate vertical and horizontal variations in P velocity between depths of 40 km to 150 km. We use a grid-search approach to find the best 1-D model, starting with the previously developed S25 regional model. The results support the existence of an 8° discontinuity in P arrivals caused by a negative velocity gradient in the lithosphere between depths of 40 km to 120 km followed by a small (∼1%) jump and then a positive gradient down to 165 km. The P velocity then decreases by 2% from 165 km to 200 km, and we define this zone as the regional lithosphere-asthenosphere boundary (LAB). Beneath northern profiles, waves reflected from the 410 discontinuity (410) are delayed by up to 1 s relative to those turning just below the 410, which we explain by an anomaly just above the discontinuity with P velocity reduced by ∼3%. The 660 discontinuity (660) appears to be composed of two smaller velocity steps with a separation of 16 km. The inferred low-velocity anomaly above 410 may indicate high water concentrations in the transition zone, and the complexity of the 660 may be related to Farallon slab segments that have yet to sink into the deep mantle
- …
