35 research outputs found

    On the convergence of local expansions of layer potentials

    Full text link
    In a recently developed quadrature method (quadrature by expansion or QBX), it was demonstrated that weakly singular or singular layer potentials can be evaluated rapidly and accurately on surface by making use of local expansions about carefully chosen off-surface points. In this paper, we derive estimates for the rate of convergence of these local expansions, providing the analytic foundation for the QBX method. The estimates may also be of mathematical interest, particularly for microlocal or asymptotic analysis in potential theory

    Sweeping Preconditioner for the Helmholtz Equation: Moving Perfectly Matched Layers

    Full text link
    This paper introduces a new sweeping preconditioner for the iterative solution of the variable coefficient Helmholtz equation in two and three dimensions. The algorithms follow the general structure of constructing an approximate LDLtLDL^t factorization by eliminating the unknowns layer by layer starting from an absorbing layer or boundary condition. The central idea of this paper is to approximate the Schur complement matrices of the factorization using moving perfectly matched layers (PMLs) introduced in the interior of the domain. Applying each Schur complement matrix is equivalent to solving a quasi-1D problem with a banded LU factorization in the 2D case and to solving a quasi-2D problem with a multifrontal method in the 3D case. The resulting preconditioner has linear application cost and the preconditioned iterative solver converges in a number of iterations that is essentially indefinite of the number of unknowns or the frequency. Numerical results are presented in both two and three dimensions to demonstrate the efficiency of this new preconditioner.Comment: 25 page

    Additive Sweeping Preconditioner for the Helmholtz Equation

    Full text link
    We introduce a new additive sweeping preconditioner for the Helmholtz equation based on the perfect matched layer (PML). This method divides the domain of interest into thin layers and proposes a new transmission condition between the subdomains where the emphasis is on the boundary values of the intermediate waves. This approach can be viewed as an effective approximation of an additive decomposition of the solution operator. When combined with the standard GMRES solver, the iteration number is essentially independent of the frequency. Several numerical examples are tested to show the efficiency of this new approach.Comment: 27 page

    Efficient coupling of inhomogeneous current spreading and dynamic electro-optical models for broad-area edge-emitting semiconductor devices

    Get PDF
    We extend a 2 (space) + 1 (time)-dimensional traveling wave model for broad-area edge-emitting semiconductor lasers by a model for inhomogeneous current spreading from the contact to the active zone of the laser. To speedup the performance of the device simulations, we suggest and discuss several approximations of the inhomogeneous current density in the active zone
    corecore