27 research outputs found

    EVALUASI KINERJA ALGORITMA PERKALIAN MATRIKS BERANTAI DENGAN TEKNIK DYNAMIC PROGRAMMING

    Get PDF
    Masalah perkalian matriks berantai adalah masalah menemukan posisi penyisipan tanda kurung pada barisan matriks sehingga perkalian matriks pada barisan tersebut dihasilkan jumlah skalar yang minimum. Paper ini membahas implementasi algoritma penyelesaian masalah perkalian matriks berantai dengan dynamic programming. Pada paper ini diperlihatkan kinerja algoritma melalui evaluasi hasil implementasi pada bahasa pemrograman Java untuk kasus-kasus perkalian barisan matriks dengan panjang barisan 3≤ n ≤ 20

    A general framework for efficient FPGA implementation of matrix product

    Get PDF
    Original article can be found at: http://www.medjcn.com/ Copyright Softmotor LimitedHigh performance systems are required by the developers for fast processing of computationally intensive applications. Reconfigurable hardware devices in the form of Filed-Programmable Gate Arrays (FPGAs) have been proposed as viable system building blocks in the construction of high performance systems at an economical price. Given the importance and the use of matrix algorithms in scientific computing applications, they seem ideal candidates to harness and exploit the advantages offered by FPGAs. In this paper, a system for matrix algorithm cores generation is described. The system provides a catalog of efficient user-customizable cores, designed for FPGA implementation, ranging in three different matrix algorithm categories: (i) matrix operations, (ii) matrix transforms and (iii) matrix decomposition. The generated core can be either a general purpose or a specific application core. The methodology used in the design and implementation of two specific image processing application cores is presented. The first core is a fully pipelined matrix multiplier for colour space conversion based on distributed arithmetic principles while the second one is a parallel floating-point matrix multiplier designed for 3D affine transformations.Peer reviewe

    Adaptive FPGA NoC-based Architecture for Multispectral Image Correlation

    Full text link
    An adaptive FPGA architecture based on the NoC (Network-on-Chip) approach is used for the multispectral image correlation. This architecture must contain several distance algorithms depending on the characteristics of spectral images and the precision of the authentication. The analysis of distance algorithms is required which bases on the algorithmic complexity, result precision, execution time and the adaptability of the implementation. This paper presents the comparison of these distance computation algorithms on one spectral database. The result of a RGB algorithm implementation was discussed

    The Algorithms for FPGA Implementation of Sparse Matrices Multiplication

    Get PDF
    In comparison to dense matrices multiplication, sparse matrices multiplication real performance for CPU is roughly 5--100 times lower when expressed in GFLOPs. For sparse matrices, microprocessors spend most of the time on comparing matrices indices rather than performing floating-point multiply and add operations. For 16-bit integer operations, like indices comparisons, computational power of the FPGA significantly surpasses that of CPU. Consequently, this paper presents a novel theoretical study how matrices sparsity factor influences the indices comparison to floating-point operation workload ratio. As a result, a novel FPGAs architecture for sparse matrix-matrix multiplication is presented for which indices comparison and floating-point operations are separated. We also verified our idea in practice, and the initial implementations results are very promising. To further decrease hardware resources required by the floating-point multiplier, a reduced width multiplication is proposed in the case when IEEE-754 standard compliance is not required
    corecore