4 research outputs found

    60 GHz Blockage Study Using Phased Arrays

    Full text link
    The millimeter wave (mmWave) frequencies offer the potential for enormous capacity wireless links. However, designing robust communication systems at these frequencies requires that we understand the channel dynamics over both time and space: mmWave signals are extremely vulnerable to blocking and the channel can thus rapidly appear and disappear with small movement of obstacles and reflectors. In rich scattering environments, different paths may experience different blocking trajectories and understanding these multi-path blocking dynamics is essential for developing and assessing beamforming and beam-tracking algorithms. This paper presents the design and experimental results of a novel measurement system which uses phased arrays to perform mmWave dynamic channel measurements. Specifically, human blockage and its effects across multiple paths are investigated with only several microseconds between successive measurements. From these measurements we develop a modeling technique which uses low-rank tensor factorization to separate the available paths so that their joint statistics can be understood.Comment: To appear in the Proceedings of the 51st Asilomar Conference on Signals, Systems, and Computers, 201

    Intelligent Defined LoS: Enabling Seamless Coverage with Human Mobility Prediction

    Get PDF
    Despite all the benefits 60 GHz networks bring about, such as high network bandwidth, effective data rates, etc., one of its main application scenarios, Line-of- Sight (LOS) communications, still has troubles in actual indoor environments due to its high directionality. Traditional beam training methods are inaccurate and time-wasting, leading to unstable and inefficient wireless networks. Therefore, in this paper, we attempt to address this problem from a new aspect, i.e., assisting the signal adaptation with human mobility prediction. A state-of-the-art long short-term memory (LSTM) model is adopted to analyze the past trajectories and predict the future position, which can serve as an important reference for the transmitters to proactively adjust their beams and provide seamless coverage. In addition, we also design an algorithm to optimize the beam selection problem and improve the network quality. To the best of our knowledge, this is the first work in the field to use deep learning models for the beam selection problem. Simulations demonstrate that our approach is robust and efficient, and outperforms the state-of-the-art in several related tasks
    corecore