2 research outputs found

    ์˜คํ”„์…‹ ์ œ๊ฑฐ๊ธฐ์˜ ์ ์‘ ์ œ์–ด ๋“ฑํ™”๊ธฐ์™€ ๋ณด์šฐ-๋ ˆ์ดํŠธ ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ๋ฅผ ํ™œ์šฉํ•œ ์ˆ˜์‹ ๊ธฐ ์„ค๊ณ„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2021.8. ์—ผ์ œ์™„.In this thesis, designs of high-speed, low-power wireline receivers (RX) are explained. To be specific, the circuit techniques of DC offset cancellation, merged-summer DFE, stochastic Baud-rate CDR, and the phase detector (PD) for multi-level signal are proposed. At first, an RX with adaptive offset cancellation (AOC) and merged summer decision-feedback equalizer (DFE) is proposed. The proposed AOC engine removes the random DC offset of the data path by examining the random data stream's sampled data and edge outputs. In addition, the proposed RX incorporates a shared-summer DFE in a half-rate structure to reduce power dissipation and hardware complexity of the adaptive equalizer. A prototype chip fabricated in 40 nm CMOS technology occupies an active area of 0.083 mm2. Thanks to the AOC engine, the proposed RX achieves the BER of less than 10-12 in a wide range of data rates: 1.62-10 Gb/s. The proposed RX consumes 18.6 mW at 10 Gb/s over a channel with a 27 dB loss at 5 GHz, exhibiting a figure-of-merit of 0.068 pJ/b/dB. Secondly, a 40 nm CMOS RX with Baud-rate phase-detector (BRPD) is proposed. The RX includes two PDs: the BRPD employing the stochastic technique and the BRPD suitable for multi-level signals. Thanks to the Baud-rate CDRโ€™s advantage, by not using an edge-sampling clock, the proposed CDR can reduce the power consumption by lowering the hardware complexity. Besides, the proposed stochastic phase detector (SPD) tracks an optimal phase-locking point that maximizes the vertical eye opening. Furthermore, despite residual inter-symbol interference, proposed BRPD for multi-level signal secures vertical eye margin, which is especially vulnerable in the multi-level signal. Besides, the proposed BRPD has a unique lock point with an adaptive DFE, unlike conventional Mueller-Muller PD. A prototype chip fabricated in 40 nm CMOS technology occupies an active area of 0.24 mm2. The proposed PAM-4 RX achieves the bit-error-rate less than 10-11 in 48 Gb/s and the power efficiency of 2.42 pJ/b.๋ณธ ๋…ผ๋ฌธ์€ ๊ณ ์†, ์ €์ „๋ ฅ์œผ๋กœ ๋™์ž‘ํ•˜๋Š” ์œ ์„  ์ˆ˜์‹ ๊ธฐ์˜ ์„ค๊ณ„์— ๋Œ€ํ•ด ์„ค๋ช…ํ•˜๊ณ  ์žˆ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ ๋งํ•˜๋ฉด, ์˜คํ”„์…‹ ์ƒ์‡„, ๋ณ‘ํ•ฉ๋œ ์„œ๋จธ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฐ์ • ํ”ผ๋“œ๋ฐฑ ๋“ฑํ™”๊ธฐ ๊ธฐ์ˆ , ํ™•๋ฅ ์  ๋ณด์šฐ ๋ ˆ์ดํŠธ ํด๋Ÿญ๊ณผ ๋ฐ์ดํ„ฐ ๋ณต์›๊ธฐ, ๊ทธ๋ฆฌ๊ณ  ๋‹ค์ค‘ ๋ ˆ๋ฒจ ์‹ ํ˜ธ์— ์ ํ•ฉํ•œ ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ฒซ์งธ๋กœ, ์ ์‘ ์˜คํ”„์…‹ ์ œ๊ฑฐ ๋ฐ ๋ณ‘ํ•ฉ๋œ ์„œ๋จธ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฐ์ • ํ”ผ๋“œ๋ฐฑ ๋“ฑํ™”๊ธฐ๋ฅผ ๊ฐ–์ถ˜ ์ˆ˜์‹ ๊ธฐ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ๋œ ์ ์‘ ์˜คํ”„์…‹ ์ œ๊ฑฐ ์—”์ง„์€ ์ž„์˜์˜ ๋ฐ์ดํ„ฐ ์ŠคํŠธ๋ฆผ์˜ ์ƒ˜ํ”Œ๋ง ๋ฐ์ดํ„ฐ, ์—์ง€ ์ถœ๋ ฅ์„ ๊ฒ€์‚ฌํ•˜์—ฌ ๋ฐ์ดํ„ฐ ๊ฒฝ๋กœ ์ƒ์˜ ์˜คํ”„์…‹์„ ์ œ๊ฑฐํ•œ๋‹ค. ๋˜ํ•œ ํ•˜ํ”„ ๋ ˆ์ดํŠธ ๊ตฌ์กฐ์˜ ๋ณ‘ํ•ฉ๋œ ์„œ๋จธ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฐ์ • ํ”ผ๋“œ๋ฐฑ ๋“ฑํ™”๊ธฐ๋Š” ์ „๋ ฅ์˜ ์‚ฌ์šฉ๊ณผ ํ•˜๋“œ์›จ์–ด์˜ ๋ณต์žก์„ฑ์„ ์ค„์ธ๋‹ค. 40 nm CMOS ๊ธฐ์ˆ ๋กœ ์ œ์ž‘๋œ ํ”„๋กœํ† ํƒ€์ž… ์นฉ์€ 0.083 mm2 ์˜ ๋ฉด์ ์„ ๊ฐ€์ง„๋‹ค. ์ ์‘ ์˜คํ”„์…‹ ์ œ๊ฑฐ๊ธฐ ๋•๋ถ„์— ์ œ์•ˆ๋œ ์ˆ˜์‹ ๊ธฐ๋Š” 10-12 ๋ฏธ๋งŒ์˜ BER์„ ๋‹ฌ์„ฑํ•œ๋‹ค. ๋˜ํ•œ ์ œ์•ˆ๋œ ์ˆ˜์‹ ๊ธฐ๋Š” 5GHz์—์„œ 27 dB์˜ ๋กœ์Šค๋ฅผ ๊ฐ–๋Š” ์ฑ„๋„์—์„œ 10 Gb/s์˜ ์†๋„์—์„œ 18.6 mW๋ฅผ ์†Œ๋น„ํ•˜๋ฉฐ 0.068 pJ/b/dB์˜ FoM์„ ๋‹ฌ์„ฑํ•˜์˜€๋‹ค. ๋‘๋ฒˆ์งธ๋กœ, ๋ณด์šฐ ๋ ˆ์ดํŠธ ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ๊ฐ€ ์žˆ๋Š” 40 nm CMOS ์ˆ˜์‹ ๊ธฐ๊ฐ€ ์ œ์•ˆ๋˜์—ˆ๋‹ค. ์ˆ˜์‹ ๊ธฐ์—๋Š” ๋‘๊ฐœ์˜ ๋ณด์šฐ ๋ ˆ์ดํŠธ ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ๋ฅผ ํฌํ•จํ•œ๋‹ค. ํ•˜๋‚˜๋Š” ํ™•๋ฅ ๋ก ์  ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•˜๋Š” ๋ณด์šฐ ๋ ˆ์ดํŠธ ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ์ด๋‹ค. ๋ณด์šฐ ๋ ˆ์ดํŠธ ํด๋Ÿญ ๋ฐ์ดํ„ฐ ๋ณต์›๊ธฐ์˜ ์žฅ์  ๋•๋ถ„์— ์—์ง€ ์ƒ˜ํ”Œ๋ง ํด๋Ÿญ์„ ์‚ฌ์šฉํ•˜์ง€ ์•Š์Œ์œผ๋กœ์„œ ํŒŒ์›Œ์˜ ์†Œ๋ชจ์™€ ํ•˜๋“œ์›จ์–ด์˜ ๋ณต์žก์„ฑ์„ ์ค„์˜€๋‹ค. ๋˜ํ•œ ํ™•๋ฅ ์  ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ๋Š” ์ˆ˜์ง ์•„์ด ์˜คํ”„๋‹์„ ์ตœ๋Œ€ํ™”ํ•˜๋Š” ์ตœ์ ์˜ ์œ„์ƒ ์ง€์ ์„ ์ฐพ์„ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋‹ค๋ฅธ ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ๋Š” ๋‹ค์ค‘ ๋ ˆ๋ฒจ ์‹ ํ˜ธ์— ์ ํ•ฉํ•œ ๋ฐฉ์‹์ด๋‹ค. ์‹ฌ๋ณผ ๊ฐ„ ๊ฐ„์„ญ์ด ๋‹ค์ค‘ ๋ ˆ๋ฒจ ์‹ ํ˜ธ์— ๋งค์šฐ ์ทจ์•ฝํ•œ ๋ฌธ์ œ๊ฐ€ ์žˆ๋”๋ผ๋„ ์ œ์•ˆ๋œ ๋‹ค์ค‘ ๋ ˆ๋ฒจ ์‹ ํ˜ธ์šฉ ๋ณด์šฐ ๋ ˆ์ดํŠธ ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ๋Š” ์ˆ˜์ง ์•„์ด ๋งˆ์ง„์„ ํ™•๋ณดํ•œ๋‹ค. ๊ฒŒ๋‹ค๊ฐ€ ์ œ์•ˆ๋œ ๋ณด์šฐ ๋ ˆ์ดํŠธ ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ๋Š” ๊ธฐ์กด์˜ ๋ฎฌ๋Ÿฌ-๋ฎ๋Ÿฌ ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ์™€ ๋‹ฌ๋ฆฌ ์ ์‘ํ˜• ๊ฒฐ์ • ํ”ผ๋“œ๋ฐฑ ๋“ฑํ™”๊ธฐ๊ฐ€ ์žˆ๋”๋ผ๋„ ์œ ์ผํ•œ ๋ฝ ์ง€์ ์„ ๊ฐ–๋Š”๋‹ค. ํ”„๋กœํ† ํƒ€์ž… ์นฉ์€ 0.24mm2์˜ ๋ฉด์ ์„ ๊ฐ€์ง„๋‹ค. ์ œ์•ˆ๋œ PAM-4 ์ˆ˜์‹ ๊ธฐ๋Š” 48 Gb/s์˜ ์†๋„์—์„œ 10-11 ๋ฏธ๋งŒ์˜ BER์„ ๊ฐ€์ง€๊ณ , 2.42 pJ/b์˜ FoM์„ ๊ฐ€์ง„๋‹ค.CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 THESIS ORGANIZATION 5 CHAPTER 2 BACKGROUNDS 6 2.1 BASIC ARCHITECTURE IN SERIAL LINK 6 2.1.1 SERIAL COMMUNICATION 6 2.1.2 CLOCK AND DATA RECOVERY 8 2.1.3 MULTI-LEVEL PULSE-AMPLITUDE MODULATION 10 2.2 EQUALIZER 12 2.2.1 EQUALIZER OVERVIEW 12 2.2.2 DECISION-FEEDBACK EQUALIZER 15 2.2.3 ADAPTIVE EQUALIZER 18 2.3 CLOCK RECOVERY 21 2.3.1 2X OVERSAMPLING PD ALEXANDER PD 22 2.3.2 BAUD-RATE PD MUELLER MULLER PD 25 CHAPTER 3 AN ADAPTIVE OFFSET CANCELLATION SCHEME AND SHARED SUMMER ADAPTIVE DFE 28 3.1 OVERVIEW 28 3.2 AN ADAPTIVE OFFSET CANCELLATION SCHEME AND SHARED-SUMMER ADAPTIVE DFE FOR LOW POWER RECEIVER 31 3.3 SHARED SUMMER DFE 37 3.4 RECEIVER IMPLEMENTATION 42 3.5 MEASUREMENT RESULTS 45 CHAPTER 4 PAM-4 BAUD-RATE DIGITAL CDR 51 4.1 OVERVIEW 51 4.2 OVERALL ARCHITECTURE 53 4.2.1 PROPOSED BAUD-RATE CDR ARCHITECTURE 53 4.2.2 PROPOSED ANALOG FRONT-END STRUCTURE 59 4.3 STOCHASTIC PHASE DETECTION PAM-4 CDR 64 4.3.1 PROPOSED STOCHASTIC PHASE DETECTION 64 4.3.2 COMPARISON OF THE STOCHASTIC PD WITH SS-MMPD 70 4.4 PHASE DETECTION FOR MULTI-LEVEL SIGNALING 73 4.4.1 PROPOSED BAUD-RATE PHASE DETECTOR FOR MULTI-LEVEL SIGNAL 73 4.4.2 DATA LEVEL AND DFE COEFFICIENT ADAPTATION 79 4.4.3 PROPOSED PHASE DETECTOR 84 4.5 MEASUREMENT RESULT 88 4.5.1 MEASUREMENT OF THE PROPOSED STOCHASTIC BAUD-RATE PHASE DETECTION 94 4.5.2 MEASUREMENT OF THE PROPOSED BAUD-RATE PHASE DETECTION FOR MULTI-LEVEL SIGNAL 97 CHAPTER 5 CONCLUSION 103 BIBLIOGRAPHY 105 ์ดˆ ๋ก 109๋ฐ•

    ๋ฉ”๋ชจ๋ฆฌ ์ธํ„ฐํŽ˜์ด์Šค๋ฅผ ์œ„ํ•œ ๋ฉ€ํ‹ฐ ๋ ˆ๋ฒจ ๋‹จ์ผ ์ข…๋‹จ ์†ก์‹ ๊ธฐ ์„ค๊ณ„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2020. 8. ๊น€์ˆ˜ํ™˜.๋ณธ ์—ฐ๊ตฌ์—์„œ ๋ฉ”๋ชจ๋ฆฌ ์ธํ„ฐํŽ˜์ด์Šค๋ฅผ ์œ„ํ•œ ๋ฉ€ํ‹ฐ ๋ ˆ๋ฒจ ์†ก์‹ ๊ธฐ๊ฐ€ ์ œ์‹œ๋˜์—ˆ๋‹ค. ํ”„๋กœ์„ธ์„œ์™€ ๋ฉ”๋ชจ๋ฆฌ ๊ฐ„์˜ ์„ฑ๋Šฅ ์ฐจ์ด๊ฐ€ ๋งค๋…„ ๊ณ„์† ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ, ๋ฉ”๋ชจ๋ฆฌ๋Š” ์ „์ฒด ์‹œ์Šคํ…œ์˜ ๋ณ‘๋ชฉ์ ์ด ๋˜๊ณ ์žˆ๋‹ค. ์šฐ๋ฆฌ๋Š” ๋ฉ”๋ชจ๋ฆฌ ๋Œ€์—ญํญ์„ ๋Š˜๋ฆฌ๊ธฐ ์œ„ํ•ด PAM-4 ๋‹จ์ผ ์ข…๋‹จ ์†ก์‹ ๊ธฐ๋ฅผ ์ œ์•ˆํ•˜์˜€๊ณ , ๋ฉ€ํ‹ฐ ๋žญํฌ ๋ฉ”๋ชจ๋ฆฌ๋ฅผ ์œ„ํ•œ duobinary ๋‹จ์ผ ์ข…๋‹จ ์†ก์‹ ๊ธฐ๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ PAM-4 ์†ก์‹ ๊ธฐ์˜ ๋“œ๋ผ์ด๋ฒ„๋Š” ๋†’์€ ์„ ํ˜•์„ฑ๊ณผ ์ž„ํ”ผ๋˜์Šค ์ •ํ•ฉ์„ ๋™์‹œ์— ๋งŒ์กฑํ•œ๋‹ค. ๋˜ํ•œ ์ €ํ•ญ์ด๋‚˜ ์ธ๋•ํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š์•„ ์ž‘์€ ๋ฉด์ ์„ ์ฐจ์ง€ํ•œ๋‹ค. ์ œ์•ˆ๋œ ZQ ์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜์€ ์„ธ๊ฐœ์˜ ๊ต์ • ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ์–ด ์†ก์‹ ๊ธฐ๊ฐ€ ์ •ํ™•ํ•œ ์ž„ํ”ผ๋˜์Šค์™€ ์„ ํ˜•์ ์ธ ์ถœ๋ ฅ์„ ๊ฐ–๊ฒŒ ํ•œ๋‹ค. ํ”„๋กœํ†  ํƒ€์ž…์€ 65nm CMOS ๊ณต์ •์œผ๋กœ ์ œ์ž‘๋˜์—ˆ๊ณ  ์†ก์‹ ๊ธฐ๋Š” 0.0333mm2์˜ ๋ฉด์ ์„ ์ฐจ์ง€ํ•œ๋‹ค. ์ธก์ •๋œ 28Gb/s์—์„œ์˜ eye๋Š” 18.3ps์˜ ๊ธธ์ด์™€ 42.4mV์˜ ๋†’์ด๋ฅผ ๊ฐ–๊ณ , ์—๋„ˆ์ง€ ํšจ์œจ์€ 0.64pJ/bit์ด๋‹ค. ZQ ์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜๊ณผ ํ•จ๊ป˜ ์ธก์ •๋œ RLM์€ 0.993์ด๋‹ค. ๋ฉ”๋ชจ๋ฆฌ์˜ ์šฉ๋Ÿ‰์„ ๋Š˜๋ฆฌ๊ธฐ ์œ„ํ•ด ํ•˜๋‚˜์˜ ํŒจํ‚ค์ง€์— ์—ฌ๋Ÿฌ ๊ฐœ์˜ DRAM ๋‹ค์ด๋ฅผ ์ˆ˜์ง์œผ๋กœ ์Œ“๋Š” ํŒจํ‚ค์ง•์€ ๋ฉ”๋ชจ๋ฆฌ์˜ ์ค‘์•™ ํŒจ๋“œ ๊ตฌ์กฐ์™€ ๊ฒฐํ•ฉ๋˜์–ด ์งง์€ ๋ฐ˜์‚ฌ๋ฅผ ์•ผ๊ธฐํ•˜๋Š” ์Šคํ…์„ ๋งŒ๋“ ๋‹ค. ์šฐ๋ฆฌ๋Š” ์ด ๋ฌธ์ œ๋ฅผ ์™„ํ™”ํ•˜๊ธฐ์œ„ํ•ด ๋ฐ˜์‚ฌ ๊ธฐ๋ฐ˜ duobinary ์†ก์‹ ๊ธฐ๋ฅผ ์ œ์•ˆํ–ˆ๋‹ค. ์ด ์†ก์‹ ๊ธฐ๋Š” ๋ฐ˜์‚ฌ๋ฅผ ์ด์šฉํ•˜์—ฌ duobinary signaling์„ ํ•œ๋‹ค. 2ํƒญ ๋ฐ˜๋Œ€ ๊ฐ•์กฐ ๊ธฐ์ˆ ๊ณผ ์Šฌ๋ฃจ ๋ ˆ์ดํŠธ ์กฐ์ ˆ ๊ธฐ์ˆ ์ด ์‹ ํ˜ธ ์™„๊ฒฐ์„ฑ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. NRZ eye๊ฐ€ ์—†๋Š” 10Gb/s์—์„œ ์ธก์ •๋œ duobinary eye๋Š” 63.6ps ๊ธธ์ด์™€ 70.8mV์˜ ๋†’์ด๋ฅผ ๊ฐ–๋Š”๋‹ค. ์ธก์ •๋œ ์—๋„ˆ์ง€ ํšจ์œจ์€ 1.38pJ/bit์ด๋‹ค.Multi-level transmitters for memory interfaces have been presented. The performance gap between processor and memory has been increased by 50% every year, making memory to be a bottle neck of the overall system. To increase memory bandwidth, we have proposed a PAM-4 single-ended transmitter. To compensate for the side effect of the multi-rank memory, we have proposed a reflection-based duobinary transmitter. The proposed PAM-4 transmitter has the driver, which simultaneously satisfies impedance matching and high linearity. The driver occupies a small area due to a resistorless and inductorless structure. The proposed ZQ calibration for PAM-4 has three calibration points, which allow the transmitter to have accurate impedance and linear output. The ZQ calibration considers impedance variation of both the driver and the receiver. A prototype has been fabricated in 65nm CMOS process, and the transmitter occupies 0.0333mm2. The measured eye has a width of 18.3ps and a height of 42.4mV at 28Gb/s, and the measured energy efficiency is 0.64pJ/b. The measured RLM with the 3-point ZQ calibration is 0.993. To increase memory density, the stacked die packaging with multiple DRAM die stacked vertically in one package is widely used. However, combined with the center-pad structure, the structure creates stubs that cause short reflections. We have proposed the reflection-based duobinary transmitter to mitigate this problem. The proposed transmitter uses reflection for duobinary signaling. The 2-tap opposite FFE and the slew-rate control are used to increase signal integrity. The measured duobinary eye at 10Gb/s has a width of 63.6ps and a height of 70.8mV while there is no NRZ eye opening. The measured energy efficiency is 1.38pJ/bit.CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 THESIS ORGANIZATION 8 CHAPTER 2 MUTI-LEVEL SIGNALING 9 2.1 PAM-4 SIGNALING 9 2.2 DESIGN CONSIDERATIONS FOR PAM-4 TRANSMITTER 16 2.2.1 LEVEL SEPARATION MISMATCH RATIO (RLM) 17 2.2.2 IMPEDANCE MATCHING 19 2.2.3 PRIOR ARTS 21 2.3 DUOBINARY SIGNALING 24 CHAPTER 3 HIGH-LINEARITY AND IMPEDANCE-MATCHED PAM-4 TRANSMITTER 30 3.1 OVERALL ARCHITECTURE 31 3.2 SINGLE-ENDED IMPEDANCE-MATCHED PAM-4 DRIVER 33 3.3 3-POINT ZQ CALIBRATION FOR PAM-4 47 CHAPTER 4 REFLECTION-BASED DUOBINARY TRANSMITTER 57 4.1 BIDIRECTIONAL DUAL-RANK MEMORY SYSTEM 58 4.2 CONCEPT OF REFLECTION-BASED DUOBINARY SIGNALING 66 4.3 REFLECTION-BASED DUOBINARY TRANSMITTER 70 4.3.1 OVERALL ARCHITECTURE 70 4.3.2 EQUALIZATION FOR REFLECTION-BASED DUOBINARY SIGNALING 72 4.3.3 2D BINARY-SEGMENTED DRIVER 75 CHAPTER 5 EXPERIMENTAL RESULTS 77 5.1 HIGH-LINEARITY AND IMPEDANCE-MATCHED PAM-4 TRANSMITTER 77 5.2 REFLECTION-BASED DUOBINARY TRANSMITTER 84 CHAPTER 6 92 CONCLUSION 92 BIBLIOGRAPHY 94Docto
    corecore