3,912 research outputs found

    Robust Hand Motion Capture and Physics-Based Control for Grasping in Real Time

    Get PDF
    Hand motion capture technologies are being explored due to high demands in the fields such as video game, virtual reality, sign language recognition, human-computer interaction, and robotics. However, existing systems suffer a few limitations, e.g. they are high-cost (expensive capture devices), intrusive (additional wear-on sensors or complex configurations), and restrictive (limited motion varieties and restricted capture space). This dissertation mainly focus on exploring algorithms and applications for the hand motion capture system that is low-cost, non-intrusive, low-restriction, high-accuracy, and robust. More specifically, we develop a realtime and fully-automatic hand tracking system using a low-cost depth camera. We first introduce an efficient shape-indexed cascaded pose regressor that directly estimates 3D hand poses from depth images. A unique property of our hand pose regressor is to utilize a low-dimensional parametric hand geometric model to learn 3D shape-indexed features robust to variations in hand shapes, viewpoints and hand poses. We further introduce a hybrid tracking scheme that effectively complements our hand pose regressor with model-based hand tracking. In addition, we develop a rapid 3D hand shape modeling method that uses a small number of depth images to accurately construct a subject-specific skinned mesh model for hand tracking. This step not only automates the whole tracking system but also improves the robustness and accuracy of model-based tracking and hand pose regression. Additionally, we also propose a physically realistic human grasping synthesis method that is capable to grasp a wide variety of objects. Given an object to be grasped, our method is capable to compute required controls (e.g. forces and torques) that advance the simulation to achieve realistic grasping. Our method combines the power of data-driven synthesis and physics-based grasping control. We first introduce a data-driven method to synthesize a realistic grasping motion from large sets of prerecorded grasping motion data. And then we transform the synthesized kinematic motion to a physically realistic one by utilizing our online physics-based motion control method. In addition, we also provide a performance interface which allows the user to act out before a depth camera to control a virtual object

    Robust Hand Motion Capture and Physics-Based Control for Grasping in Real Time

    Get PDF
    Hand motion capture technologies are being explored due to high demands in the fields such as video game, virtual reality, sign language recognition, human-computer interaction, and robotics. However, existing systems suffer a few limitations, e.g. they are high-cost (expensive capture devices), intrusive (additional wear-on sensors or complex configurations), and restrictive (limited motion varieties and restricted capture space). This dissertation mainly focus on exploring algorithms and applications for the hand motion capture system that is low-cost, non-intrusive, low-restriction, high-accuracy, and robust. More specifically, we develop a realtime and fully-automatic hand tracking system using a low-cost depth camera. We first introduce an efficient shape-indexed cascaded pose regressor that directly estimates 3D hand poses from depth images. A unique property of our hand pose regressor is to utilize a low-dimensional parametric hand geometric model to learn 3D shape-indexed features robust to variations in hand shapes, viewpoints and hand poses. We further introduce a hybrid tracking scheme that effectively complements our hand pose regressor with model-based hand tracking. In addition, we develop a rapid 3D hand shape modeling method that uses a small number of depth images to accurately construct a subject-specific skinned mesh model for hand tracking. This step not only automates the whole tracking system but also improves the robustness and accuracy of model-based tracking and hand pose regression. Additionally, we also propose a physically realistic human grasping synthesis method that is capable to grasp a wide variety of objects. Given an object to be grasped, our method is capable to compute required controls (e.g. forces and torques) that advance the simulation to achieve realistic grasping. Our method combines the power of data-driven synthesis and physics-based grasping control. We first introduce a data-driven method to synthesize a realistic grasping motion from large sets of prerecorded grasping motion data. And then we transform the synthesized kinematic motion to a physically realistic one by utilizing our online physics-based motion control method. In addition, we also provide a performance interface which allows the user to act out before a depth camera to control a virtual object
    • …
    corecore