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ABSTRACT

Hand motion capture technologies are being explored due to high demands in the fields

such as video game, virtual reality, sign language recognition, human-computer interac-

tion, and robotics. However, existing systems suffer a few limitations, e.g. they are high-

cost (expensive capture devices), intrusive (additional wear-on sensors or complex con-

figurations) , and restrictive (limited motion varieties and restricted capture space). This

dissertation mainly focus on exploring algorithms and applications for the hand motion

capture system that is low-cost, non-intrusive, low-restriction, high-accuracy, and robust.

More specifically, we develop a realtime and fully-automatic hand tracking system

using a low-cost depth camera. We first introduce an efficient shape-indexed cascaded pose

regressor that directly estimates 3D hand poses from depth images. A unique property of

our hand pose regressor is to utilize a low-dimensional parametric hand geometric model

to learn 3D shape-indexed features robust to variations in hand shapes, viewpoints and

hand poses. We further introduce a hybrid tracking scheme that effectively complements

our hand pose regressor with model-based hand tracking. In addition, we develop a rapid

3D hand shape modeling method that uses a small number of depth images to accurately

construct a subject-specific skinned mesh model for hand tracking. This step not only

automates the whole tracking system but also improves the robustness and accuracy of

model-based tracking and hand pose regression.

Additionally, we also propose a physically realistic human grasping synthesis method

that is capable to grasp a wide variety of objects. Given an object to be grasped, our

method is capable to compute required controls (e.g. forces and torques) that advance the

simulation to achieve realistic grasping. Our method combines the power of data-driven

synthesis and physics-based grasping control. We first introduce a data-driven method to
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synthesize a realistic grasping motion from large sets of prerecorded grasping motion data.

And then we transform the synthesized kinematic motion to a physically realistic one by

utilizing our online physics-based motion control method. In addition, we also provide a

performance interface which allows the user to act out before a depth camera to control a

virtual object.
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CHAPTER I

INTRODUCTION

Hand motion capture, especially real-time 3D hand tracking, plays an important role

in our life, because it can facilitate interactive animation and control of human gestures

in movies, video game, virtual reality, head mounted displays (HMD) and human-robot

interaction. However, to track a 3D hand gesture is extremely difficult, because it requires

to reconstruct both large-range global movement and delicate articulations of the hand.

Decades of research have explored a number of approaches, such as marker-based

systems (e.g. Vicon[1]), glove-based systems (e.g. Cyberglove[2]), inertial systems (e.g.

Noitom[3]) and image-based systems e.g. 3Gear[4]. However, to build an accurate and

robust hand tracking system is extremely hard. Marker-based systems, even though with

multiple cameras, still often produce ambiguous results due to significant self-occlusion

during the hand movement. Glove-based systems and inertial systems are occlusion free

but often fail to capture delicate hand articulations accurately. In addition, these three sys-

tems are often cumbersome and intrusive, because they require the hand to wear special

markers, sensors or suites. Image-based systems offer an appealing solution for the track-

ing problem, because they require no additional wear-on sensors for the user. Also with

the advancement of the depth capture technology, depth cameras are affordable to daily

users and play an important role in the hand track problem. Our research mainly focuses

on how to track the hand with a single depth camera.

One appealing direction is model-based hand tracking [5, 6, 7], which requires an ini-

tial pose for the first frame and then tracks the following poses sequentially by minimizing

the inconsistency between the hypothesized poses and the observed image data. However,

two main limitations exist for current methods. First, they are not fully automatic, because

1



they require manually constructing a subject-specific 3D hand model and specifying the

initial pose for the first frame. Second, they cannot recover from the tracking failure once

the systems get stuck in the local minimum, because they cannot initialize by themselves.

Another appealing direction is appearance-based detection method [8, 9, 10, 11], which

retrieves a most probable hand pose from a prebuilt dataset consisting of the image-pose

pairs. However, current methods still need manual intervention for the subject-specific

modeling. Also, the tracking accuracy is usually worse than that of model-based tracking,

and cannot be used in high-accuracy applications, e.g. motion synthesis, virtual remote

control.

In this dissertation, we propose a hybrid tracking scheme that combines the model-

based tracking with a per-frame pose regressor (which belongs to the appearance-based

detection). The per-frame pose regressor does not require specific initialization at the

first frame and directly estimates poses from depth images in a per-frame framework.

However, the result of the regressor is usually less accurate than that of the model-based

tracking. Model-based tracking can produce more accurate result but may stuck in the

tracking failure and require manual initialization. The appropriate combination of these

two methods makes them complementary to each other. Our pose regressor is built upon

cascaded pose regression [12, 13, 10], where the object pose is estimated progressively

by sequential weak regressors and each weak regressor uses the pose-indexed features

that depends on the estimated pose from the previous stage. However, the pose-indexed

features do not consider the variations of hand shapes, and then do not perform well when

applying to subjects with different hand shapes. With the help of a low-dimensional 3D

parametric hand model, we significantly advance the pose-indexed features to the shape-

indexed features, which provide more robustness to variations in hand shapes, viewpoints

and hand poses. Additionally, to automate the whole tracking process, we also propose a

rapid 3D hand modeling method that can reconstruct a subject-specific hand model from
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a small number of depth images. The accurate subject-specific hand model will also help

improve the robustness of the model-based tracking and the pose regressor.

We demonstrate the power of our approach by testing on a wide range of subjects

and tracking a variety of hand gestures in real time. Our method achieves state-of-the-

art accuracy in comparison against alternative systems. We also validate our method by

evaluating the importance of key components of our 3D hand tracking process.

Besides, we also explore one application of hand tracking on physically realistic grasp-

ing synthesis by utilizing prerecorded grasping motion capture data. In real life, the hu-

man is capable to grasp a large amount of objects with different properties, e.g.shapes,

weights, frictions, and spatial orientations. However, to synthesize a physically realis-

tic grasping motion is still a challenge task. An ideal grasping action should include a

good planning of the hand reaching to the object, careful selection of contacts between

fingers and the object, and adaption to objects with different geometry and dynamic char-

acteristics. Otherwise, the grasping action may looks unnatural, e.g. motion jerkiness,

unreasonable contacts, finger-object penetration, or unreal hand motion while grasping.

Recent efforts [14, 15, 16, 17, 18, 19] have made some significant progress, but an auto-

mated and realtime system for grasping a large amount of objects with different geometry

and physics properties is still challenging and unresolved. In this dissertation, we propose

a novel grasping synthesis algorithm to solve the problem above. Our algorithm takes into

account the following aspects:

• Physical realism. A synthesized grasping motion without physics may be judged

as unacceptable, because it may include motion jerkiness, robotic movement and

object-hand penetration. In addition, without considering the object physical prop-

erties, the interaction between hand and different objects will be unreal.

• Scalability. A subject is usually able to grasp a large amount of objects with different
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grasp modes (e.g. power and pinch grip). Even with the same grasp mode and the

same object, the subject should be able to display different grasping motions as

the physical property (e.g.weight, friction) changes. And therefore, it requires our

algorithm should include a rich set of grasping motion, grasp modes and objects.

• Control. An ideal animation system should be intuitive and empower the user with

easy-to-use interfaces. The system should allow novice users to generate a desired

grasping action quickly and easily–with virtually no learning curve.

• Realtime. The system should be quickly enough to allow interaction with the user.

The user experience is essential for the system.

More specifically, we propose a realtime and robust system that synthesizes physically

realistic human grasping motions. Given an object to be grasped, our system is capa-

ble to compute desired controls (e.g. forces and torques) that advances the simulation to

achieve the realistic grasping. Our solution includes two significant components, the kine-

matic grasping motion synthesis and the physics-based grasping control. The kinematic

grasping motion synthesis process utilizes a data-driven method that synthesizes realistic

grasping motion with a large set of prerecorded grasping motion data. The physics-based

control process then transforms the synthesized kinematic motion into a physically real-

istic one. Additionally, we also provide a performance interface that novice users can act

out in a single Kinect camera to achieve virtual grasping. We demonstrate the power of

our approach by generating physically realistic grasping motions for objects with different

properties e.g. shapes, weights, frictions, spatial positions and orientations. We also vali-

date our physics-based control approach by showing robustness to external perturbations

and changes in physical quantities.
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I.1 Contributions.

For our hand tracking system, we have made the following technical contributions:

• First and foremost, an end-to-end realtime 3D hand tracking system that accurately

and automatically tracks 3D hand poses using a single depth camera.

• A shape-indexed cascaded pose regression method that significantly extends the idea

of cascaded pose regression to 3D hand pose regression.

• An automatic 3D hand shape modeling method that accurately constructs a subject-

specific skinned mesh model from a small set of depth images.

• A hybrid tracking scheme that complements model-based tracking with per-frame

pose regressor.

For our physically realistic grasping synthesis, we have made the following technical

contributions:

• An efficient data-driven synthesis algorithm that utilizes a large set of prerecorded

human grasping data to generate realistic, controllable animation for grasping ob-

jects substantially different from database objects.

• A robust physics-based motion control algorithm that transforms kinematic motions

of the hand and object into physically realistic ones.

• A performance interface that allows the user to create a desired grasping action by

acting out the motion in front of a single Kinect camera.

• A high-quality human grasping database for grasping a wide variety of objects with

different grip styles, that will enable other researchers to apply their algorithms to

this problem.
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In the second chapter, we will describe how to build an automated and robust hand

tracking system using a single depth camera, including the shape-invariant pose regressor,

hybrid tracking algorithm and rapid geometric hand shape modeling. In the third chapter,

we will describe how to synthesize physically realistic grasping motions for a large variety

of objects, including the construction of the grasping motion dataset, kinematic grasping

motion synthesis, and physics-based transformation. In the final chapter, we will make a

summary of our work and propose the future work.
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CHAPTER II

AUTOMATIC AND REALTIME HAND TRACKING USING A SINGLE DEPTH

CAMERA

The ability to accurately track 3D hand poses in realtime would allow interactive an-

imation and control of human gestures in movies, video games, virtual environments and

teleconferences. Such a system would also facilitate touchless user interaction in smart-

phones, computers, head mounted displays (HMD), robots and machines. However, real-

time tracking of 3D hand gesture is extremely hard because it requires reconstructing both

global hand movements and delicate hand articulations.

Decades of research in computer graphics have explored a number of approaches to

capture hand motion data, including marker-based systems, glove-based systems, inertial

systems and image-based systems. Despite the efforts, acquiring accurate hand motion

data in realtime remains a challenging task. Marker-based systems (e.g. Vicon) often

produce ambiguous solutions because of significant self-occlusion. Glove-based systems

(e.g. CyberGlove) and inertial systems (e.g. Noitom) are occlusion-free but captured mo-

tion data are often noisy and might not be able to track delicate hand articulations. In

addition, glove-based systems and inertial systems are cumbersome and unwieldy, thereby

impeding the subject’s ability to perform the motion. Image-based systems offer an ap-

pealing alternative to hand motion capture because they require no markers, no gloves, or

no wear-on sensors and thereby do not impede the subject’s ability to perform the motion.

One appealing solution to image-based systems is model-based hand pose tracking [5],

which initializes a 3D hand pose at the first frame and sequentially tracks 3D poses by min-

imizing the inconsistency between the hypothesized poses and the observed image data.

Recent efforts in model-based tracking (e.g., [6, 7]) have focused on 3D hand tracking us-

7



ing RGBD images obtained by a single depth sensor and have demonstrated impressive

results for 3D hand tracking. Model-based tracking methods, however, are often not fully

automatic because they require manual intervention on constructing a subject-specific 3D

hand geometric model for tracking and initialization of the starting poses. Another limita-

tion is that they cannot automatically recover from failures once the system gets stuck in

the local minimum.

This chapter presents an automatic and robust method for accurately tracking 3D hand

poses in real time via a single depth camera (Figure II.1). Our key idea is to introduce an

efficient hybrid tracking scheme that complements model-based tracking with an efficient

per-frame pose regressor. Our per-frame pose regressor directly estimates 3D hand poses

from depth images. Model-based tracking and per-frame pose regressor are complemen-

tary to each other. At one end, model-based tracking can produce more accurate results

but often requires manual initialization and recovery. At the other end, 3D pose detection

can automatically infer 3D human poses from single depth images but often with less ac-

curate results. An appropriate combination of both techniques provides benefits at both

ends. Our pose regressor is built upon cascaded pose regression [12, 13, 10], where the

object pose is estimated progressively via a sequence of weak regressors and each weak

regressor uses features that depend on the estimated pose from the previous stage. We

significantly extend the idea of cascaded pose regression to 3D hand pose regression by

utilizing a low-dimensional 3D parametric hand model to learn 3D shape-indexed features

that are more robust to variations in hand shapes, viewpoints and hand poses. In addi-

tion, we introduce an automatic hand shape modeling method that accurately constructs

a subject-specific skinning hand mesh model from a small number of depth images. This

idea not only automates the whole tracking system but also improves the robustness and

accuracy of model-based tracking and hand pose regression.

Our final system is appealing for realtime hand motion tracking because it is low-cost,
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Figure II.1: Our automatic system accurately tracks 3D hand poses in real time via a single
depth sensor. (Left) Top row: depth input data, Bottom row: reconstruction results; (Right)
A live demo of our realtime hand tracking system.

non-intrusive, and robust to large variations in hand shapes, viewpoints and hand poses

multiple and allows for accurate reconstruction of 3D hand poses even under significant

occlusions. Our system is implemented on a GPU and achieves realtime performance (45

frames per second). We demonstrate the effectiveness of our system by testing on a wide

range of complicated hand movements, including various combinations of global hand

movements and delicate hand articulations. We achieve state-of-the-art accuracy in our

comparison against alternative systems. We also validate our algorithm by evaluating the

importance of key components of our 3D hand tracker.

Contributions. Our system has made the following technical contributions:

• First and foremost, an end-to-end realtime 3D hand tracking system that accurately

and automatically tracks 3D hand poses using a single depth camera.

• A shape-indexed cascaded pose regression method that significantly extends the idea

of cascaded pose regression to 3D hand pose regression.

• An automatic 3D hand shape modeling method that accurately constructs a subject-
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specific skinned mesh model from a small set of depth images.

• A hybrid tracking scheme that complements model-based tracking with per-frame

pose regressor.

II.1 Background

Various approaches have been proposed for tracking 3D hand poses from input RGB/RGBD

data. Generally, those approaches can be divided into two categories: appearance-based

detection and model-based tracking. Our approach combines the advantages of both ap-

proaches while avoiding their disadvantages. In the following, we discuss most relevant

papers on hand tracking related to our approach in these two categories. In addition, we

also introduce a low-dimensional parametric hand shape model for rapid construction of a

subject-specific skinning hand mesh model required for 3D hand tracking. We, therefore,

also discuss relevant work in 3D hand shape modeling and reconstruction.

Appearance-based detection. One appealing solution to hand motion tracking is to

take a bottom-up approach to predict 3D positions of hand joints directly from RGB or

depth images, which is called appearance-based detection approach. The approach is ap-

pealing because it does not assume any 3D hand mesh model, does not require 3D pose

initialization, and does not get trapped to any local minima. Notably, Wang and his col-

leagues [20, 21] extracted image features from input RGB images and used them to pre-

dict corresponding 3D hand poses by searching the closest example in the preprocessed

hand pose database. Recently, Tang and his colleagues [22, 23] presented an efficient

regression forest technique to estimate 3D hand poses directly from depth images. More

recently, Tompson and his colleagues [9] employed convolutional networks to learn a map-

ping that directly transforms input depth images to 3D hand joint locations. Oberweger

and colleagues[24, 25] further extended Tompson’s work by adding a feedback convo-

lution network to refine the estimated 3D pose. Sun and his colleagues [10] extended
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2D cascaded pose regression [12] to 3D hand pose regression by employing hierarchical

regression to predict 3D joint positions directly from input depth images. Tang and his col-

leagues [11] predicted hand poses from input depth data using hierarchical pose regression

and then refined the prediction poses by sampling around the candidate poses.

Our methods builds upon per-frame pose regressor that directly estimates 3D poses

from single depth images. Among all the systems, our hand pose regressor is most sim-

ilar to [10]. Both systems are based on per-frame cascaded pose regression. However,

our work significant extends cascaded pose regression to hand pose prediction because

we utilize a low-dimensional parametric hand model to learn 3D shape-indexed features

that are more robust to variations in hand shapes, poses and viewpoint. The evaluation in

Section II.6.3 clearly shows that our pose regression method achieves much more accurate

results than theirs [10]. Another distinction is that we complement 3D pose regression

with model-based tracking, thereby further improving the robustness and accuracy of our

tracking system. Finally, our system is fully automatic because we introduce an automatic

3D hand modeling process that accurately reconstructs a subject-specific skinning hand

model from a small number of depth images. In contrast, they rely on manual interac-

tion to create a 3D hand model for each subject, which is required for cascaded 3D pose

regression.

Model-based tracking. An alternative solution to track 3D hand poses from im-

age data is model-based tracking (e.g., [5, 26]), which initializes a 3D hand pose at the

first frame and sequentially tracks 3D poses by minimizing the inconsistency between

the hypothesized poses and the observed image data. One possibility is to sequentially

search an optimal pose to best match observed depth data via Particle Swarm Optimiza-

tion (PSO) [27, 28, 29, 30, 31]. PSO employs random sampling technique to search an

optimal pose in the vicinity of the previous pose. Recently, Qian and his colleagues [30]

improved the search efficiency of PSO by combining with Iterative Closest Points (ICP).
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Particle filter is also introduced to improve the searching efficiency of PSO in [32, 33].

Unlike PSO, ICP performs local search of an optimal pose using gradient-based optimiza-

tion, thereby increasing the tracking accuracy. ICP and its variants have been successfully

applied in human body tracking[34, 35] and hand tracking [36, 7]. Both Qian et al. [30]

and Taglisacchi et al. [7] employed fingertip detection as reinitializer to deal with tracking

failure. However, it requires finger tips to be clearly visible. Sridhar et al. [37] represented

the hand model and depth data as a mixture of Gaussian and estimated the poses by mini-

mizing the difference between two Gaussian functions with parts detection as reinitializer.

Model-based pose tracking approaches can often produce more accurate results than

detection-based approaches but they are not fully automatic and require manual initial-

ization of the starting poses. They are also not robust because they cannot automatically

recover from failures once the system gets stuck in the local minimum. We address these

challenges by complementing model-based tracking with per-frame cascaded pose regres-

sion. In addition, we develop a rapid 3D hand shape modeling method that uses a small

number of depth images to accurately construct a subject-specific skinned mesh model

required for model-based tracking. This step not only automates the whole tracking sys-

tem but also improves the robustness and accuracy of model-based tracking. It is worth

mentioning that our hybrid tracking scheme is flexible and can be combined with any

model-based tracking to enhance the accuracy and robustness of model-based tracking.

Rapid hand shape modeling. One critical component of our automatic system is to

rapidly construct a subject-specific 3D hand shape model for model-based tracking. One

possibility to model human hands is to use simple geometric primitives to approximate

hand geometry (e.g., [7, 33]). A more efficient way for 3D hand modeling is to use a

skinned mesh model with Linear Blend Skinning (LBS) for pose deformation (e.g., [28,

38, 9, 31]) as done in many hand tracking algorithms. More advanced algorithms such

as [39] are also proposed to generate a more plausible or realistic hand model for pose
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deformation. However, these methods only account for shape variances induced by pose

deformation for a specific subject.

Our work is different because we focus on rapid construction of a subject-specific skin-

ning hand model from depth images. To achieve this goal, we learn a low-dimensional

parametric skinning hand model for pose deformation using a large database of high-

quality scanning mesh models of human hands. Unlike previous work, our modeling

process is also fully automatic because we estimate low-dimensional model parameters

directly from a small set of input depth images. Our low-dimensional parametric hand

model is relevant to a linear shape model for pose deformation [40]. Our model is different

and more expressive because we decouple shape variations into skeleton scale variations

and vertex offset variations, and model each of them using a low-dimensional parameters.

In addition, we construct the parametric model from high-quality scanning mesh models

annotated with a large set of point correspondences rather than low-resolution unlabeled

depth images, thereby significantly improving the resolution and accuracy of parametric

mesh models.

II.2 Overview

We aim to build an automatic realtime hand tracking system that robustly and accu-

rately tracks 3D hand poses using a single RGBD camera. To address this challenge,

we first introduce a rapid hand shape modeling method that automatically fits a low-

dimensional parametric hand model to a small number of depth images. Then we propose a

shape-indexed cascaded pose regression method robust to large variations in hand shapes,

poses and camera viewpoints. Finally, we introduce a hybrid tracking scheme to combine

the power of cascaded hand pose regression and model-based tracking. An overview of

our system can be seen in Figure II.2.

Acquisition device. Our depth data capture device is Intel Creative Gesture Camera
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Figure II.2: System overview.

time-of-flight sensor as in Figure II.3. It can capture near-range (20cm to 50cm) depth data

with 320*240 resolution up to 60fps. It also provides corresponding infrared data, which

can be used to remove depth noise around the edges.

Automatic hand shape modeling. Accurate reconstruction of a subject-specific hand

shape model is critical to our tracking system because both our shape-indexed hand pose

regression and model-based tracking rely on the hand shape model. We represent the sub-

ject’s hand skeleton and skinned mesh model using a low-dimensional parametric hand

model Hi(α,β ,q), where the parameters α and β control the shape and skeleton scale

variations, respectively, and the parameter q models the joint angle pose of 3D hand. We

instruct the subject to perform a small set of predefined poses and automatically optimize

the model’s shape parameter α,β and hand poses q by minimizing the difference between

the hypothesized hand model and the observed depth images. Each subject needs to per-

form hand shape modeling once before tracking.

Shape-indexed cascaded pose regression. We extend cascaded pose regression by

incorporating the reconstructed subject-specific hand shape model into cascaded pose re-

gression. Specifically, we develop a shape-indexed feature parameterization method that

represents a 3D feature point as its associated skinned mesh vertex plus a 3D vertex offset.
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Figure II.3: Capture device: Intel Creative Gesture Camera.

The association is computed by choosing the mesh vertex with the minimum distance to

the 3D feature point. We train cascaded pose regressor based on a wide range of data sets

generated by random sampling the low-dimensional parametric hand model. The pose

regression works in hierarchical order that first regresses the palm and then five fingers

respectively. In addition, for regression output, we do not simply use the mean or median

of all leafs. Instead, we extract all the possible modes by clustering leafs and choose to

keep all the modes for further decision.

Hybrid tracking. We introduce a hybrid tracking framework that combines advan-

tages of both per-frame pose regression and model-based tracking. Our first idea is to

apply model-based tracking to refine 3D poses obtained by cascaded pose regression. In

addition, we utilize the temporal coherence to improve the accuracy of the cascaded pose

regression. Such a combination not only automates the whole capturing process but also

significantly improves the accuracy and robustness of the system.
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We describe these components in detail in the next sections.

II.3 Automatic Hand Shape Modeling

In this session, we present a low-dimensional parametric model for 3D hand model-

ing. Our core idea is to construct a low-dimensional parametric model that compactly

represent hand shape variations across individuals and enhance it by adding Linear Blend

Skinning (LBS) for pose deformation. Mathematically, we model a 3D hand mesh model

by H(α,β ,q;W), where the shape parameters α , β provides a low-dimensional repre-

sentation of hand shape variances across individuals, the pose parameter q specifies the

joint angle values of the 3D hand pose, and W represents the skinning weights required

for skinning deformation. Our parametric model provides a continuous and compact rep-

resentation for allowable shape variances across different human subjects, but is specific

enough not to allow arbitrary variations that are not similar to those seen in the database.

With this parametric model, we could randomly sample the parameters α , β and q to

generate an infinite number of natural-looking hand models in different shapes and under

different poses. Furthermore, we could choose the parameters so that the model would

match various forms of user input.

In the following sessions, we describe how to represent a hand, how to model a hand

geometry by a low-dimensional parametric model, and then how to acquire a hand model

for a subject using depth data.

II.3.1 Hand Representation

We approximate the hand geometry using a skinned mesh model, which is driven by an

articulated skeleton model using Linear Blend Skinning (LBS). The skinned mesh model

consists of 4138 vertices and 8227 faces, and the skeleton model consists of 27 bone seg-

ments, as in Figure II.4 (a) and Figure II.4 (b). We describe a hand pose using a set of

independent joint coordinates q ∈ R27, including absolute palm position and orientation
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Figure II.4: Our hand pose consists of 27 degrees of freedom, including absolute palm
position and orientation (6) and the relative joint angles of individual joints (21). (a) hand
skeleton model; (b) skinned hand mesh model.

(6 Dof), as well as relative joint angles of individual joints. These bones includes thumb-

tm (2 Dof), thumb-mcp (2 Dof), thumb-ip (1 Dof), index-mcp(2 Dof), index-pip (1 Dof),

index-dip (1 Dof), middle-mcp (2 Dof), middle-pip (1 Dof), middle-dip (1 Dof), ring-

mcp (2 Dof), ring-pip (1 Dof), ring-dip (1 Dof), pinky-mcp (2 Dof), pinky-pip (1 Dof)

and pinky-dip (1 Dof). Here tm, mcp, ip, pip, dip represents trapeziometacarpal, metacar-

pophalangeal, interphalangeal, proximal interphalangeal and distal interphalangeal respec-

tively.
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II.3.2 3D Hand Shape Geometry Model

We model shape variances between subjects by two components: skeleton scales,

which encodes coarse-level variation like the global scale and scale of the bones, and

mesh vertex offsets, which encodes fine-level shape variation, such as thickness of a fin-

ger. We define v̂i j as the ith vertex in the jth bone’s local coordinate, which can be directly

computed as

v̂i j = T̂−1
j v̂i, (II.1)

where v̂i is the ith vertex of the template mesh, T̂−1
j is the inverse transformation for

the jth bone of the template skeleton under rest pose. Note that both scale and offset

transformation are operated on v̂i j.

Skeleton scales. It is obvious to see that skeleton size varies among subjects, and the

shape of a subject could largely be determined by its skeleton size (bone length), as shown

in Figure II.5 (a). For a given template skeleton with bone sizes B̂ = [b̂0, b̂1, . . . , b̂n−1],

we represent the skeleton size of a new subject’s skeleton B = [b0,b1, . . . ,bn−1] using an

overall scale and scale of bones S = [sg,s0,s1, . . . ,sn−1],

bi = sg · si · b̂i, i = 0,1,2, ...,n−1, (II.2)

where sg is the overall scale and si is the scale for each bone i.

To apply the scale to the template, we use a method similar to Linear Blend Skinning

(LBS) except that we scale the vertices in the local coordinate before transform it back to

the world coordinate. That is, we first transform each vertex to the local coordinates of

corresponding bones according to the skinning weights, scale them by the overall scale

sg uniformly, and then scale them in the direction of the bone based on the bone scales,

transform the scaled vertices back to world coordinate, and then compute the final vertex
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position by the linear combination of scaled vertices based on the skinning weights. Note

that we treat the global scale sg separately since we apply sg on all axes uniformly but

apply the bone scales only in the direction of the bones. To summarize, the scaled vertex

v̂′i j in local coordinate of bone j can be expressed as

v̂′i j = S⊗ v̂i j,

S⊗ v̂i j = sgs j(v̂i j ·d j)d j + sg(v̂i j− (v̂i j ·d j)d j),

(II.3)

where v̂i j is the ith vertex in the jth bone’s local coordinate, d j is the jth bone’s direction

in its local coordinate, (v̂i j · d j)d j and v̂i j − (v̂i j · d j)d j represent the component of v̂i j

parallel to and perpendicular to the jth bone’s direction respectively, qrest is the rest pose,

Tj(qrest) is the transformation of the jth bone for pose qrest , and W = [wi j] is skinning

weights for deformation, and n is the number of bones.

(a) (b)

Figure II.5: Hand shape variations: (a) skeleton size variation; (b) thickness variation.

Using the skeleton scales, we could model the structure of the shape accurately. How-
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ever, this representation is not compact, since the scales between bones are highly corre-

lated. For example, if the proximal phalange of a finger is longer than the template, then

it is likely that the intermediate and distal phalanges of the same finger will be longer too.

To reduce the dimension, we apply Principal Component Analysis (PCA) to the scales S

to build a compact model by

S(α) = S0 +CSα, (II.4)

where S0 is the mean skeleton scales of all subjects, CS is the coefficient matrix of

principal components. α is the low dimensional representation of S.

Vertex offsets. Skeleton scales S only models the coarse shape of the subjects. To

model subtle details of the subject, such as palm and finger thicknesses, we use vertex

offsets Q = [δv0,δv1, . . . ,δvm], i.e., displacement vector between the subject and the tem-

plate mesh for each template vertex for this purpose, as shown in Figure II.5 (b). We

model the offsets in the coordinate of the template under rest pose, which eliminates the

skeleton size and pose variances for the subject and makes the vertex offsets invariant to

scale and pose. That is, we apply the offsets to the template before scaling the vertices

using skeleton scales. To summarize, the offsetted vertex v̂′i j can be expressed as

v̂′i j = Qi⊕ v̂i j = v̂i j +T−1
j (qrest)Qi, (II.5)

where T−1
j (qrest) represents the inverse transformation of the jth bone under the rest pose

qrest , and Qi = δvi.

Although vertex offset is powerful to capture the shape details, it is a high dimensional

and redundant representation due to the smoothness of neighboring vertices. For example,

if the palm of a subject is thicker than template, then neighboring vertices of the palm will
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probably have similar displacements. Similar to the skeleton scale model, we apply PCA

to the vertex offsets to get a compact representation

Q(β ) = Q0 +CQβ , (II.6)

where β is the low dimensional representation, Q0 is the mean offsets and CQ is the eigen

basis.

Shape model. We can define a composite transformation by combining both scale

(Equation (II.3)) and offset (Equation (II.5))transformations to get the local coordinates of

the shape vertex v̂′i j

v̂′i j = S(α)⊗ (Q(β )⊕ v̂i j), (II.7)

II.3.3 Hand Pose Model

For a specific hand mesh model with a skeleton attached, we use Linear Blend Skinning

(LBS) to deform the pose of the mesh model, as shown in Figure II.6.

LBS defines how a geometry deforms according to the underlying bones, and consists

of three components: a template mesh Ms and a skeleton Ks in rest pose for subject s,

and corresponding skinning weights W. Ms and Ks define the geometry and underlying

skeleton structure for subject s in rest pose qrest , which could be obtained from our shape

model. The weight map describes how the mesh vertices are influenced by the bones. We

deform Ms to generate mesh in new poses by changing q, as shown in Figure II.6(c) and

(d).

The vertex vi after deformation is described as

vi(q) =
n−1

∑
j=0

wi jTj(q)v̂i j, (II.8)
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where v̂i j is the ith vertex coordinate expressed in the jth bone’s local coordinate, q

is the pose for deformation, T (q) j is the transformation of the jth bone for pose q, and

W = [wi j] is the sparse skinning weights for deformation, and n is the number of bones.

(a) (b) (c) (d)

Figure II.6: Pose modeling: (a) Mesh and skeleton in rest pose; (b) weight map for one of
the bones (hotter colors for larger weights); (c)-(d) new meshes generated by changing the
joint angle pose q.

II.3.4 Parametric Hand Model

By combining the shape and pose model in Equation (II.7) and (II.8), we have a low-

dimensional parametric hand model representing by skeleton scales α , vertex offsets β ,

and pose q

Hi(α,β ,q;W,U) =
n−1

∑
j=0

wi jTj(q)v̂′i j,

v̂′i j = S(α)⊗ (Q(β )⊕ v̂i j),

(II.9)

where Hi(·) is the coordinate of the ith vertex of the mesh model, v̂′i j is the result of

the scale and offset transformation on v̂i j, q is the pose for deformation, Tj(q) is the
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transformation of the jth bone for pose q, U = {S0,CS,Q0,CQ} is the shape basis defined

in Equation (II.4) and (II.6), and W = [wi j] is a sparse weight map for deformation, n is

the number of bones.

Using this model, we first generate the subject-specific template mesh Ms and skeleton

Ks for each subject according to the shape model under rest pose, and then generate meshes

under different poses using the skin weights W and pose q. By combining the shape and

pose model, we can describe arbitrary hand geometries. The model parameters, including

the statistical representations of skeleton size and vertex offsets, and the skin weights, are

all learned from a database.

II.3.5 Model Learning

To build the parametric hand model, we will need to learn the skinning weights W and

the shape basis U = {S0,CS,Q0,CQ} based on a template mesh M̂ and its skeleton K̂. We

propose a data-driven method to learn these parameters from a scan database.

We build a scan database by scanning human right hands using an Artec Eva 3D scan-

ner. The scanner provides dense and detailed 3D triangular meshes, which contain about

70k vertices and 140k faces. We captured data from 166 subjects (103 males and 63 fe-

males). Each subject is asked to perform 1∼ 5 poses from a set of predefined poses, which

gives us 466 models in total.

For a scanned database Y = {Y st} representing the set of vertices for the scan st, where

s is the subject index, t is the pose index for the subject, we would like to learn the shape

basis U , the skin weights W, as well as per scan parameters SP = {αs,β s,{qst},Cst} so

that the synthesized hand model H(αs,β s,qst ;W,U) defined in Equation (II.9) fits the

scanned meshes best

U∗,W∗ = argmin
U,W,SP

∑
s

∑
t

∥∥H(αs,β s,qst ;W,U)−Y st
C
∥∥2
, (II.10)
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where αs, β s are the shape parameters for subject s, qst is the pose for the scan, H(·) gives

the set of vertices of the synthesized hand model, and Y st
C is the corresponding set of ver-

tices in the scan st. The correspondence building process is similar as in Section II.5.2.1.

To learn the model, we first initialize skin weights W according to [41], and then fix

W to learn the skeleton scales S, vertex offsets Q and poses {q} for each subject using

non-linear optimization. Then, we optimize W on all subjects by fixing skeleton scales

S, vertex offsets Q and poses {q}. Finally, we learn PCA models for skeleton scales S,

vertex offsets Q on all subjects.

II.3.6 Automatic Construction of Subject-specific Hand Model

The subject-specific hand model can be represented as Hi(α,β ,q;W,U) as described

in Equation (II.9). W and U are already learnt in Section II.3.5. To acquire the subject’s

hand model, we should solve (α,β ). Here is our model construction process:

(1) We instruct the subject to perform a small set of pre-defined hand poses {qd
t } and

record the corresponding depth images.

(2) To reconstruct both the shape and poses of the subject, we formulate an optimiza-

tion problem and seek to find the optimal shape parameter α , β and poses {qt} for each

depth image It .

argmin
α,β ,qt

∑
t
‖H(α,β ,qt)−PC‖2, (II.11)

where C is the set of correspondence, and H(·) the set of vertices of the synthesized hand

model, PC is the corresponding point cloud generated from the depth image It . The corre-

spondence building process is similar to Section II.5.2.1.

(3) We optimize the shape and poses as follows. We initialize the pose {qt} to {qd
t }.

We first optimize the shape parameters α , β by fixing {qt} and then update the poses {qt}

by keeping the shape parameters α , β constant. We iterate the process until convergence.
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This step allows us to obtain the subject-specific hand model (α,β ).

II.4 Cascaded Hand Pose Regression via Shape-Indexed Features

Cascaded pose regression has already been introduced in hand tracking [10]. However,

their pose regression is not fully automatic and need manual intervention to estimate the

skeleton size of the subject. In addition, they do not consider the variation of hand shape

among subjects, because their feature parameterization is only related to a manual estimate

of hand scale. Then, for regression output in leafs, they directly use the mean or the

median, and therefore lose some significant modes.

Our method can automatically acquire the hand model of a subject by employing a

parametric hand model as described in Section II.3. And we propose a shape-indexed

feature parameterization that encodes hand shape information into features. It will signifi-

cantly increase the feature invariance to hand shape. In addition, for regression output, we

do not simply use the mean or median, but extract several modes by clustering and keep

all modes for further decision.

In order to estimate the hand pose, we begin with a depth image I and an initial

pose q0. Then we iteratively update the hand pose by prebuilt cascaded regressors R =

{R1,R2, ...,RC}:

qs = qs−1 +Rs(I,M(qs−1)),s = 1,2, ...,C, (II.12)

where qs and qs−1 represents hand pose in sth and (s−1)th stage, C is the total num-

ber of cascades, M(qs−1) represents the skinned mesh model under hand pose qs−1, and

Rs(I,M(qs−1)) represents the regressor in sth stage with shape-indexed features on depth

image I.

Each regressor Rs is represented by a standard random regression forest [42, 43], which

is learnt to approximate the difference between the ground truth pose and previous pose
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qs−1 on all training samples. Starting from the root node of each regression tree, it com-

pares the depth difference between two parameterized pixels with a threshold, and then

either goes to the left branch or the right branch determined by whether the difference is

larger than the threshold. The process is terminated until it reaches the leaf. Each leaf

stores a δq to update the input pose. Pixel selection, threshold and pose update stored in

leafs are all learnt from training process. The proposed shape-index feature is to param-

eterize pixel selection in order to make each selected pixel as invariant as possible for all

training samples. It relates pixel parameterization to both the hand shape model and pre-

vious pose qs−1. Such shape-indexed features not only provide good geometric invariance

as pose-indexed features, but also provide better hand shape invariance than pose-indexed

features. The shape-indexed features make our system much more robust when tracking

the hand from different subjects.

In the following subsections, we will first describe how to perform shape-indexed fea-

ture parameterization, how to perform hierarchical regression, and how to build training

datasets.

II.4.1 3D Shape-Indexed Features

We will first describe how to extract pose-indexed features for 3D hand pose regres-

sion, and then how to improve the shape variance by extending pose-indexed features to

shape-indexed features.

Similar to previous cascaded pose regressions on object tracking [12] and facial track-

ing [13], we use the pixel-pair difference features, I(u1)− I(u2), where u1 and u2 are two

random pixels from the depth image I. The key to achieve pose invariance and shape

invariance is how to parameterize u1 and u2.

Pose Invariance. To achieve pose invariance, u1 and u2 are defined as the reference

pixel u1,re f and u2,re f plus 2D offsets δu1 and δu2 expressed in the pose-indexed local
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coordinate:

u1 = u1,re f +T1,re f δu1,

u2 = u2,re f +T2,re f δu2,
(II.13)

where T1,re f and T2,re f represent the transformation of the pose-indexed local coordi-

nates defined in the image coordinate.

Now we extend it from 2D to 3D as in Equation (II.14) , as we can obtain 3D data from

depth camera.

u1 =CamPro j(u1,re f +T1,re f δu1),

u2 =CamPro j(u2,re f +T2,re f δu2),
(II.14)

where u1,re f and u2,re f are 3D reference points (the origin of the pose-indexed ref-

erence coordinate), δu1 and δu2 are 3D offsets expressed in the pose-indexed reference

coordinate. CamPro j represents the camera project matrix that maps 3D point to 2D pixel

in the image plane.

In hand pose regression, the reference point can be chosen as the palm position and the

pose-indexed reference coordinate can be chosen as the local coordinate of the palm for

palm regression. And the reference point can be chosen as the finger root (the position of

mcp joint) position and the pose-indexed reference coordinate can be chosen as the local

coordinate of the finger root (mcp joint) for finger regression.

Shape Invariance. Pose-indexed features provide good geometric invariance, because

all features are selected in the pose-indexed reference coordinate. However, it does not

consider the shape variance of the object. For example, one subject’s hand is thicker than

another’s. Then the same 3D offsets P may correspond to a hand pixel for one subject and

a background pixel for another, as in Figure II.7 (a). It will result in more ambiguity when

training and testing the regression model in different subjects. And therefore, we introduce
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(a) Pose-indexed features (b) Shape-indexed features

Figure II.7: Pose-indexed features (a) v.s. Shape-indexed features (b). Pose-indexed fea-
tures do not consider the shape of the hand, and therefore are not robust to hands with
different shapes. Shape-indexed features are parameterized by shape information, and
therefore robust to hands with different shapes.

shape-indexed features based on pose-indexed features. The shape-indexed features still

choose the same reference coordinate, but choose a mesh vertex as the reference point

instead of the coordinate origin. As in Figure II.7 (b), M is chosen as the reference point,

and the 3D offset of the point P is computed based on M. The parameterization can be

represented as follows:

u1 =CamPro j(uM1 +T1,re f δu1),

u2 =CamPro j(uM2 +T2,re f δu2),
(II.15)

where uM1 and uM2 represent two chosen vertices of skinned mesh model, T1,re f and

T2,re f represent the transformation of the reference coordinate for M1 and M2. Since hand

models can be acquired as described in Section II.3, all mesh models have the same struc-

tures and all mesh vertex have been well aligned. For example, we can choose the 100th

and the 200th vertex as the reference points, δu1 and δu2 can be chosen 3D offsets respect

to the 100th and the 200th vertex expressed in their reference coordinates. Similar to [13],

we first sample a large amount of 3D points, and then associate each point to its closest
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hand mesh vertex. Shape-indexed features are more robust than pose-indexed features,

because they consider the shape variance of hands when selecting features.

II.4.2 Cascaded Hierarchical Regression

Generally, there are two methods to do hand pose regression, holistic regression and

hierarchical regression.

The holistic regression simply regress the whole hand’s pose q. It chooses the palm’s

local coordinate as the reference coordinate for feature parameterization and pose update,

as in

for s = 1 : C

qs = qs−1 +Tpalm Rs(I,Ms−1),

end

(II.16)

where qs and qs−1 are joint poses on the sth and (s−1)th stage, Tpalm is the transformation

of the palm’s coordinate, Rs(I,Ms−1) is the regressor in the sth stage with the depth image

I and the skinned mesh Ms−1

The hierarchical regression regresses the hand pose along the kinematic chain. First

regress the palm, and then regress each part along the kinematic chain. In our system, our

hierarchy is divided into two parts, palm and five fingers. We first perform palm regression.

For palm regression, we choose the palm’s local coordinate as the reference coordinate for

feature parameterization and pose update. And then we perform finger regression for each

finger separately. For each finger, we choose its finger-root(mcp joint)’s local coordinate

as the reference coordinate for feature parameterization and pose update. Also we find that

joint positions are more robust than joint angles when doing regression. Therefore, we do

regression on joint positions and then transfer back to joint angles by inverse kinematics.

The hierarchical regression process can be described as follows:
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(1) Regress the palm.

for s = 1 : C

qpalm
s = qpalm

s−1 +Tpalm Rs(I,Ms−1),

end

(II.17)

(2) Update Tf according to Tpalm.

(3) Regress each finger separately.

for s = 1 : C

q f
s = q f

s−1 +Tf Rs(I,Ms−1),

f ∈ {index,middle,ring, pinky, thumb}

end

(II.18)

where qpalm
s and qpalm

s−1 are palm poses in the sth stage and (s− 1)th stage, q f
t and q f

s−1

are finger poses in the sth stage and (s−1)th stage, Tpalm and Tf are transformation of the

palm’s and the finger’s reference coordinate.

According to [10], hierarchical regression is more robust than holistic regression. So

we choose hierarchical regression here.

Initialization. Both training and testing data require an initial pose q0 to start the

regression. The initial pose for palm regression is computed as follows. First, we compute

the mean of point clouds from depth camera as the position of joint middle-mcp. And then

we do PCA on point clouds and obtain three axes. We choose the palm’s Y axis as the

direction with the largest variation, and the Z axis is the direction with the least variation,

and then X axis by the cross product of Y axis and Z axis. Then we can compute the

palm position according to the skeleton model and middle-mcp joint position. The finger

regression initializes fingers at their default positions, e.g. joint angles are all 0. The initial
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reference coordinate for finger regression, is chosen to be the local coordinate of the mcp

joint when joint angles are 0.

II.4.3 Multiple Modes in Regression

Since our data includes a large amount of viewpoint variations and significant occlu-

sions, the regression output may not converge very well in leafs. Simply choosing the

median or the mean of all leafs, will not provide a good estimate of the pose, but lose

some important modes. And therefore, we cluster all leafs, and keep cluster centers as

candidates. All candidates will be kept for further decision.

In our data, we find that leafs of palm regression always have several different modes

and must be all kept. 3 or 4 modes are enough for tracking according to our experiment.

However, for finger regression, simply using the median or the mean will be good for our

tracking. And therefore, for palm regression, we cluster all leafs, and keep cluster centers

as palm candidates. For every palm candidate, we perform finger regression, and then

obtain a hand pose candidate. All pose candidates will be kept for further decision.

II.4.4 Training Dataset

The regression model should include kinds of variations, including subject variation,

pose variation and viewpoint variations. When designing training dataset, all variations

above are considered.

Subject variation. In order to include training samples from different subjects, we

synthesize 40 hand skeletons and skinned mesh models by randomly sampling (α,β ) as

described in Section II.3.

Pose variation. We choose poses either from American Sign Languages or from our

motion capture data using three Kinects. Every pose is expanded into several poses by

adding random perturbations in joint angles.

Viewpoint variation. In order to robust to viewpoint variation, we randomly sam-
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ple a large amount of palm global transformations (translations and orientations). Those

transformations include almost all valid movement range of palm.

We use synthesized data as our training dataset. We synthesize 40 skeletons and

skinned mesh models. For each subject, we have 200 joint poses and 40 global transfor-

mations per joint pose. In total, we have around 200×40×40 = 3200000 training samples

in our dataset.

We render a depth image per sample via OpenGL render framework. Since the synthe-

sized data is much cleaner than the real data, we add random noise, silhouette noise into

synthesized data to simulate the real data. And therefore we could get 320000 training

samples which includes depth image I and ground truth pose (qg).

II.5 Hybrid Tracking

The regression output may be not compatible with depth image very well due to the

noise and large viewpoint variations. The low-quality and noisy output cannot be used for

motion capture. In addition, without accurate reconstruction, we cannot acquire accurate

temporal information from previous frames to help select the best candidate from a group

of candidates. And therefore, we introduce hybrid tracking framework to solve these two

issues. The hybrid tracking framework employs model-based tracking techniques to refine

the regression output, and then help select the candidates from regression output with

previous accurate reconstruction result. Our hybrid tracking framework can work with any

model-based tracking methods. In the system, we choose ICP due to the reconstruction

accuracy and computational time requirement.

In the section, we will first introduce our hybrid tracking framework, and then intro-

duce our model-based tracking techniques.
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II.5.1 Hybrid Tracking Framework

The hybrid tracking framework has two main components: pose refinement and can-

didate selection.

Pose refinement. Appearance-based approach cannot provide accurate pose recon-

struction due to noise, significant occlusion and large viewpoint change. Here we employ

model-based tracking e.g. Iterative Closest Point (ICP) and Particle Swarm Optimization

(PSO), to help further refine the result. Since the regression is hierarchical and the palm

regression has significant effects on finger regression, and therefore we use model-based

tracking to refine palm regression result of each candidate before finger regression. And

then we perform finger regression, and finally refine the whole pose of each candidate.

Candidate selection. To select the correct candidate from the pose pool is very im-

portant for tracking accuracy. Simply using depth difference metric will fail for some

frames due to the ambiguity of pose-depth correspondence. Therefore, we introduce tem-

poral information to filter candidates. When the previous frame is tracked successfully,

the previous pose can be used as temporal filtering for current candidate selection. Here,

we employ the average depth error between synthesized depth image of hand model and

observed depth image from camera to determine whether a frame is tracked successfully

or not. It can be defined as follows:

δ = (Ed < τ),

Ed = ∑‖Ir− I‖/card((Ir∪ I)> 0),
(II.19)

where Ir and I are rendered depth image and observed depth image, card((Ir∪ I)> 0) are

the number of non-zero pixel for the union of Ir and I, and τ is a threshold that determines

whether tracking is successful or not.

When the previous frame is tracked successfully, we can add its temporal information
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into a candidate’s cost. And therefore we define the cost of each candidate as:

Ec = λ1Ed +λ2Es,

Ed = ∑‖Ir− I‖/card((Ir∪ I)> 0),

Es = δ
∥∥qi−qi−1

∥∥2
,

(II.20)

where Ir and I are rendered depth image and observed depth image of a candidate,

card((Ir∪ I)> 0) are the number of non-zero pixel for the union of Ir and I, δ is set to 1 if

previous frame is tracked successfully and 0 if not, and qi and qi−1 is the pose of ith frame

and i-1th frame.

It works well to use regression output as initialization for model-based tracking for

most frames. However, only using regression output as initialization will fail for some

frames. One reason is that our training data cannot include all situations. Another reason

is that both noise and self-occlusion will lower the accuracy of regression. And therefore,

we add previous pose with one-iteration refinement into the pose pool.

In addition, since the result of finger regression highly depends on the result of palm

regression according to the kinematic chain, we employ model-based tracking to refine the

result of palm regression first, and then do finger regression on the refined palm result.

Here is our hybrid tracking framework.

Step 1: Given a depth frame, first run palm regressor to obtain several palm estimates.

Then do one-iteration palm refinement for each palm estimate.

Step 2: Run finger regressor on each palm estimate. Put all candidates into the pose

pool.

Step 3: Do one-iteration palm refinement on previous frame, and then put it into the

pose pool.

Step 4: Perform pose refinement on each candidate in the pose pool. It usually takes 3

to 4 iterations.
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Step 5: Choose the candidate with the lowest cost as in Equation (II.20).

Step 6: Update δ for the selected candidate according to Equation (II.19). The com-

puted δ will be used for candidate selection in next frame.

II.5.2 Model-based Tracking

Iterative Closest Point (ICP) and Particle Swarm Optimization (PSO) are classical

model-based tracking approaches in human body and hand. In the system, we choose

ICP method because of its reconstruction accuracy and search efficiency over PSO. ICP

has already been used in human body tracking [34, 35] and hand tracking [7, 36]. Simi-

lar to their methods, we formulate the reconstruction problem in a nonlinear optimization

framework that iteratively registers our 3D hand model with observed 3d point cloud.

Given the previous hand pose qi−1 and the regression output pose qr, the observed

point cloud data Pi, we aim to refine the hand pose q∗ that best matches the observed point

cloud data Pi.

We estimate the hand pose q∗ by minimizing the following objective function:

argmin
q

λ1Edata +λ2Esmoothness +λ3E joint , (II.21)

where Edata represents 3d registration term that penalizes the registration error between our

3d hand model and the observed point cloud, Esmoothness represents the pose smoothness

term that penalizes the jerkiness and spurs in the motion, E joint represents the joint limit

term that penalizes invalid joint angles. Joint limits come from motion capture data and

human experience. The weights λ1,λ2,λ3 measure the importance of each term, and are

set to 1.0, 0.2, and 1000.0 respectively according to our experiments. We will describe the

details of each term in the following subsection.
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II.5.2.1 Data Term

The data term evaluates how well the current hand pose q matches the observed point

cloud data P via analysis-by-synthesis technique. Given the hand pose q, we first apply

Skeleton Subspace Deformation to update the position and normal for each mesh vertex

to synthesize the 3D hand model. Since the observed point cloud data is partial and in-

complete, we should determine which part of synthesized 3D hand model will be used

for registration. The next step is to compute the registration error between the synthe-

sized point cloud and the observed point cloud. It requires to identify the correspondence

between them.

Synthesized point cloud selection. An easy option is to use all synthesized point

cloud. However, this option will result in tracking failure when the hand is moving away

to the camera, because the observed point cloud data may incorrectly matches to the in-

visible synthesized point cloud. Then another option comes into our mind that using all

visible synthesized point cloud. This idea is mainly used in human body tracking [34, 35],

but cannot be applied into hand tracking due to significant occlusion. The occluded syn-

thesized point cloud has no chance to register with the observed point cloud. It will cause

tracking failure when an occluded finger reappears in the following frame. In this system,

we choose the similar option in [7] that using all facing-camera point cloud including the

visible point cloud and the occluded but facing-camera point cloud. See Figure II.8 for

more details.

Correspondence building. For every observed depth point Pi , we find the mesh vertex

M j with minimum distance to Pi as a pair of correspondence (i, j), as in Equation

M j = argmin
Mk∈S f c

‖Pi−Mk‖2, (II.22)

where S f c is the set of facing-camera mesh vertices. However, searching in such a large
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Figure II.8: Synthesized point cloud selection. The first row shows that using all vertices
will cause observed data incorrectly matches to backwards vertices when the hand is mov-
ing away to the camera. The second row shows that using all visible vertices will cause
tracking failure for occluded fingers. The third row shows how our method solves the
issue.

set is usually time-consuming, as most vertices in the set are probably not the one that

we are looking for. And therefore we build a small candidate set for an observed depth

point Pi, which includes mesh vertices whose projected 2D image coordinates are close

to Pi’s projected 2D image coordinate. That is, we first build a Pi-centered window in

2D image coordinate, and then we build the set by including all facing-camera mesh ver-

tices whose projected 2D image coordinate are within the window. The correspondence

building process is updated once for each tracking iteration.
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Implementation. Given the hand pose q, we first apply Skeleton Subspace Deforma-

tion to update the position and normal for each mesh vertex to synthesize the 3D hand

model. And then given intrinsic and extrinsic parameters of the depth camera, we render

the 3D hand model into the 2D image plane via OpenGL framework. Using the shading

language, we can easily store its 3D coordinate and color information for every pixel in the

rendered image. By assigning a unique color to every mesh vertex, we can quickly asso-

ciate a 2D pixel with a 3D mesh vertex in the rendered image according to the 2D pixel’s

color. In order to identify occluded but facing-camera vertices, we first compare every ver-

tex’s normal n with the direction of depth camera nk (simply assumed to be (0,0,-1)), and

then compare its depth d with the depth of its projected 2d pixel d′. Those vertices who

satisfy both nT nk > 0 and d > d′ will be chosen as occluded but facing-camera vertices.

For correspondence building process, for a depth point Pi, we first compute its project 2D

image coordinate (xPi,yPi), and then building a window centered at (xPi,yPi). For every

rendered pixel inside the window, we find its associated mesh vertex by checking its color

and add it to a candidate set. Occluded but facing-camera vertices are also added to the

candidate set if their projected 2D coordinates are within the window. And then we choose

the mesh vertex with minimum distance to Pi from the candidate set as Pi’s corresponding

mesh vertex.

Generally, our data term can be represented as

Edata = ∑
(Pi,M j)∈S

∥∥Pi−M j(q)
∥∥2

, (II.23)

where S defines the correspondence set described as above, M j(q) represents the jth vertex

for 3D hand model determined by the hand pose q, Pi represents the ith observed depth

point.
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II.5.2.2 Smoothness Term

We add the smoothness term to penalize the jerkiness and spurs between two consec-

utive poses. If the previous pose is tracked successfully, δ is set to 1 and the smoothness

term is to penalize the jerkiness between the current pose qi and the previous pose qi−1. If

the previous pose is tracked unsuccessfully, δ is set to 0 and smoothness term is to penalize

the jerkiness between the current pose qi and the regression output pose qr.

The smoothness term is defined as:

Esmoothness = δ
∥∥qi−qi−1

∥∥2
+(1−δ )‖qi−qr‖

2 , (II.24)

II.5.2.3 Joint Limits Term

We add the joint limits term to penalize invalid joint poses that exceeds the range of

joint movement. Each joint angle qd,d = 7,8, ...27 should stay within [qd
l ,q

d
u]. The joint

limits term can be represented as:

E joint =
27

∑
d=7

(φ(qd < qd
l )
∥∥∥qd−qd

l

∥∥∥2
+φ(qd > qd

u)
∥∥∥qd−qd

u

∥∥∥2
), (II.25)

where φ(x) is a binary function that

φ(x) = 1, i f x is true,

φ(x) = 0, i f x is f alse,
(II.26)

Since the global translation and orientation does not have movement range, we do not

add constraints on first 6 variables in q
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II.5.2.4 Optimization

The Equation (II.21) now can be represented a sum of squares, and therefore we can

solve it by Gauss-Newton method. Since every term is differentiable, we can first compute

the Jacobian matrix J(q), and then follow the standard Gauss-Newton step to solve δq and

update current q:

J(q)T J(q)δq = J(q)T r(q),

q = q+δq,
(II.27)

where r(q) the residual vector that concatenated from each term.

II.6 Results

In the section, we demonstrate the power of our approach by testing on a wide variety

of hand motions using our system (Section II.6.1). Our comparison against alternative

methods shows our system achieves state-of-the-art accuracy (Section II.6.2). We valid

our method by evaluating the importance of shape-indexed features, and the importance

of hybrid tracking (Section II.6.3). Our results are best seen in the accompanying video.

Computational timing. Our final system runs at 45fps on an Intel i7-2600K, 16GB

RAM, Nvidia GeForce GTX 680 desktop with GPU acceleration. Regression tree traver-

sal, correspondence building and Jacobian matrix evaluation are all highly parallel and

can be accelerated on GPU efficiently. with 45fps, our method can perform model-based

tracking to 4.2 poses per frame on average with 4 iterations per pose. Detailed timing in-

formation is summarized in Table II.1. Each regression forest includes 10 regression trees

per cascade and 3 cascades in total. The tree depth is chosen to 15 experimentally. The

training process takes about 48 hours without acceleration.
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Component Time(ms)
Upload depth to GPU and preprocess 1

Pose regression 4

ICP per iteration
Model rendering 0.6

Correspondence and Jacobian 2.2
(4 in total) Gaussian-Newton 1.5

Table II.1: Computational timing for our system

II.6.1 Test on Real Data

We have tested our system on a wide variety of hand movements, including signifi-

cant global hand rotation/translation and complex finger articulation. Figure II.9 and Fig-

ure II.10 show sample frames of tracking results. We have also evaluated our system on

a large number of subjects with different ages and genders. We show four of them in

Figure II.11.

Figure II.9: Result: tracking 3D hand movements with significant hand translations and
rotations.
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Figure II.10: Result: tracking 3D hand pose with delicate hand articulations.

Subject 1#       Subject 2#          Subject 3#          Subject 4# 

Figure II.11: Result: test on different subjects. Subject 1: male adult, 30 yrs old. Subject
2: female adult, 29 yrs old. Subject 3: young child, 12 yrs old. Subject 4: female adult,
35 yrs old.

II.6.2 Comparisons against Alternative Methods

We have evaluated our tracking system by comparing against state-of-the-art meth-

ods, including appearance-based detection methods [9, 10, 24] and model-based tracking

methods [6, 7, 37].
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We evaluate our method on three datasets, including our own dataset, NYU dataset [9]

and Dexter dataset [44]. We define the evaluation metric based on the average success rate

of all the tracking frames, which is defined as the percentage of frames that all joint errors

are lower than a chosen threshold. Table II.2 summarizes the properties of three datasets.

Dataset Capture device Data quality Motion description

Our data Intel Creative Gesture Camera Good
Significant palm rotation

normal speed

NYU data PrimeSense High noise
Moderate palm rotation

slow speed

Dexter data Intel Creative Gesture Camera Good
Small palm rotation

normal speed

Table II.2: Description of three datasets for evaluation on different algorithms.

• Our own dataset consists of six motion sequences from a single subject captured by

Intel Creative Gesture Camera. Our dataset is extremely challenging for hand pose

tracking because the recorded data has significant palm rotations. Ground truth pose

data is initialized by our tracking system and then refined by manual intervention.

• NYU dataset [9] is captured by PrimeSense and contains training and testing datasets

from two different subjects. Ground truth data were obtained by PSO using three

Kinects surrounding the subject. NYU dataset generally has slow hand movement

and moderate palm rotations but contains high noise because it is captured by rela-

tively old Primesense sensors. NYU dataset is challenging for tracking because of

noisy input data.

• Dexter dataset [44] includes seven motion sequences from a single subject captured

by Intel Creative Gesture Camera. This dataset has small palm rotations (most are
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front-view) and normal speeds for hand movement. Ground truth data was manually

labeled. Among all the three datasets, Dexter dataset is probably the easiest for

tracking.

Throughout the whole comparison, our per-frame regression model is trained by our own

dataset described in Section II.4.4.

II.6.2.1 Evaluation on Our Dataset

Our first evaluation compares our method against [7, 6, 10] on our own dataset.

Frame     545                   555                      561                  575                    584                    596  

Input 

Ours 

Tag 

Figure II.12: Comparison against [Tagliasacchi et al. 2015]. The first row shows the depth
input. The second row shows tracking results of our method. The third row shows tracking
results of [Tagliasacchi et al. 2015].

Comparison against [7]. We compare our system against state-of-the-art model-based

tracking [7]. We downloaded their source code and manually adjusted the hand scale to

match the subject’s hand size. The accompanying video shows a side-by-side comparison
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between the two systems. Figure II.12 clearly shows the advantage of our system. Our

system is more robust while their initializer seems to only work in front view. Note that,

unlike their method, our system can automatically model a subject’s hand without manual

intervention.

Comparison against PSO [6]. We compare our system against model-based tracking

via PSO. We implemented PSO-based tracking with 64 particles and 25 iterations for

each frame. Since PSO tracking cannot initialize the pose automatically, we used the

first frame of our method to initialize PSO tracking. A side-by-side comparison between

the two systems is shown in the accompanying video. Figure II.13 shows sample frames

of comparison results. Compared with their work, our system is more accurate and fully

automatic, including modeling the subject-specific hand model and initializing the tracking

pose.

Frame      186                   192                     211                  218                   224                    234  

Input 

Our 

PSO 

Figure II.13: Comparison against PSO [Oikonomidis et al. 2011a]. The first row shows
the depth input. The second row shows tracking results of our method. The third row
shows tracking results of PSO method.
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Comparisons against Cascaded Pose Regression [10]. We implemented cascaded

pose regression method in [10]. For our implementation, we directly used our subject-

specific hand model for their regressor because the paper does not provide details about

how to estimate the skeleton model for regression. We trained their pose regressor using

our own training dataset. Figure II.14 shows the advantage of our system. Compared with

our work, their method needs manual intervention to estimate a roughly hand scale. And

their method does not consider hand shape into regression and therefore is not invariant to

hand proportions and sizes of different subjects. The accompanying video shows a side-

by-side comparison between the two systems. Our results are much more accurate because

we complement per-frame pose regression with model-based tracking.

Frame      138                  143                    148                   153                   158                    163  

Input 

Ours 

Sun 

Figure II.14: Comparison against [Sun et al. 2015]. The first row shows the depth input.
The second row shows tracking results of our method. The third row shows tracking results
of Sun’s method.
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II.6.2.2 Evaluation on NYU Dataset

Figure II.15: Comparison against alternative methods in NYU dataset.

All authors of [9, 7, 24] have posted their result on the first 2440 frames of NYU dataset

and therefore we evaluate the performance of our method on the first 2440 frames. Tomp-

son et al.’s original result includes three joint positions on the palm that several methods

find it difficult to localize. To avoid this issue, we used a common subset (10 joints) in-

cluding two joints from each finger to compute the joint error in each frame. Tompson

et al. only provided 2D predictions in the image coordinate and we transform their 2D

predictions into 3D positions by acquiring the corresponding depth information from orig-

inal depth images. If the depth data is missing, we used ground truth depth data instead,

which could inevitably increase the performance of their method. The comparison result
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is shown in Figure II.15. In NYU dataset, our method performs better than other three

methods. In addition, compared with [24], our method is more robust because the training

dataset of our method has no relationship with the testing dataset, while their method uses

similar dataset for training and testing (both from NYU dataset).

Figure II.16: Comparison against alternative methods in Dexter dataset.

II.6.2.3 Evaluation on Dexter Dataset

Both authors of [7, 37] have posted their results on Dexter dataset (3155 frames in

total). In the evaluation, we use five finger tips (one per each finger) to compute joint

errors in each frame, as the palm is difficult to localize in Dexter dataset. The comparison

result is shown in Figure II.16. Our result is more accurate than [37] and is comparable

to [7]. Note that there may exist labeling errors due to labeling inconsistency since ground
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truth data was manually labeled.

II.6.3 Evaluation of Key Components

We now evaluate two key components of our system, including importance of the

shape-indexed feature parameterization and the importance of hybrid tracking scheme.

Figure II.17: Evaluation of shape-indexed features against pose-indexed features. The
blue curve shows the successful rate of shape-indexed features, while the red curve shows
that of pose-indexed features.

Evaluation on shape-indexed features against pose-indexed features. We first eval-

uate the importance of shape-indexed features against pose-indexed features by comparing

results obtained by both regressors (without model-based tracking) against ground truth

data. Our evaluation is based on cross validation on synthetic depth data generated by
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our parametric hand model. We employ the success rate as the metric, which is the per-

centage of frames that all joint errors are lower than a chosen threshold. Here the joint

error is defined as the distance between reconstructed joint position and the ground truth

joint position. Figure II.17 clearly shows that our shape-indexed feature parameterization

performs better than pose-indexed regression.

Importance of hybrid tracking. We compare our hybrid tracker against shape in-

dexed regressor and model-based tracking (ICP). For ICP implementation, we used the

first frame of hybrid tracking to initialize the beginning pose. The accompanying video

shows a side-by-side comparison between the three methods. Figure II.18 clearly shows

the advantage of combining model-based tracking and per-frame pose regression.

II.7 Conclusion and Limitations

In this chapter, we have presented an end-to-end realtime system that automatically and

accurately tracks 3D hand poses via a single depth camera. Our system is appealing for

hand motion tracking because it is low-cost, non-intrusive, and robust to large variations

in hand shapes, hand poses and viewpoints and allows for accurate reconstruction of 3D

hand poses even in the case of significant occlusions. We have tested our system on both

live streams and recorded depth data, demonstrating its accuracy and robustness under a

wide range of hand gestures and overcoming significant differences of shapes and poses

across individuals. Our system achieves state-of-the-art accuracy by comparing against

alternative methods.

Complementing tracking with detection not only automates the tracking process but

also improves the accuracy and robustness of the whole system. Our framework for com-

bining model-based tracking and per-frame pose detection is very flexible. We believe that

any efficient model-based tracking technique such as [27, 7] can be plugged into our frame-

work to allow for automatic and robust tracking of 3D hand poses from single-camera
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Frame             179                   284                     452                  612                632                 662  

Input 

Hybrid 

Regressor 
only 

ICP only 

Figure II.18: Evaluation of importance of hybrid tracking. The first row shows the depth
input. The second row shows reconstruction result of hybrid tracking. The third row shows
reconstruction result with regressor only. The fourth row shows reconstruction result with
ICP only.

depth data.

The current system has a few limitations. First, the whole system fails to produce good

results when neither model-based tracking process nor per-frame detection process is able

to produce good results. This often occurs when input depth data contains ambiguities

caused by significant occlusions, motion blur (fast motion), or a lack of discernible fea-

tures on a hand such as rotating the fist (e.g., Figure II.19). Figure II.20 illustrates another

concern. When previous frames fail to produce good results and no temporal informa-

tion can be used to predict or filter the current frame, multiple 3D hand poses might be

consistent with ambiguous observed depth data. Even though pose pool obtained by per-
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Figure II.19: Error case I: Failure when geometric features disappear.

Figure II.20: Error case II: (Left) Input depth image (Middle) Selected pose (Right) Cor-
rect candidate. Our method may select the wrong pose when no temporal information
available.

frame regression includes the correct pose but noisy and ambiguous data is often not suf-

ficient to select the correct pose as the output pose. Note that our hybrid tracking scheme

can automatically recover from failure. In the future, we plan to continue improving our
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model-based tracking process. As noted by prior research [45], kinematic priors learned

from prerecorded motion data could be used to constrain the pose in the solution space of

natural appearance to further improve the quality of reconstruction pose. In addition, we

plan to construct the subject-specific penetration model for each subject according to the

acquired skinned mesh to avoid finger penetration in output poses. The penetration model

can be represented by a group of spheres. Then the problem is transformed to simplify a

skinned mesh by a group of spheres. It will help us remove the finger penetration in output

poses by adding penetration term in model-based tracking as in [7].
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CHAPTER III

ROBUST REALTIME PHYSICS-BASED MOTION CONTROL FOR HUMAN

GRASPING ∗

Human hands are capable of grasping an astounding variety of objects of different

shapes, weights, frictions, and spatial orientations with little effort. However, creating

physically realistic animation for human grasping is a nontrivial task. An ideal grasping

action must take into account the geometry and dynamic characteristics of the object to be

grasped and the selection of contact between the object and the fingers, thumb, and palm of

the hand. Recent years have seen some significant advances in this area [15, 16, 17, 18, 19].

Still, the ultimate goal of building an automated realtime system that is capable of grasping

a wide variety of objects with different geometry and physical quantities remains unsolved.

With this goal in mind, we propose an algorithm motivated by the following principles:

Physical realism. Natural appearance is a must because people are extremely adept

at judging whether an animated character appears realistic or not. A synthesized grasping

motion that accomplishes an intended task might be judged as unacceptable if it appears

jerky, moves like a robotic hand, or contains any unpleasant visual artifacts such as hand-

object penetration. In addition, we require output animation to be physically plausible,

which ensures human grasping takes into account dynamic aspects of objects crucial to

human-object interaction.

Scalability. A lifelike human character must possess a rich repertoire of grasping

actions and display a wide range of variation within the same action. This inevitably

requires grasping objects of different shapes, weights, frictions, and spatial orientations

∗Reprinted with permission from “Robust Realtime Physics-based Motion Control for Human Grasping”
by Wenping Zhao, Jianjie Zhang, Jianyuan Min, and Jinxiang Chai, 2013. ACM Trans. Graph, 32, 207:1–
207:12, DOI 10.1145/2508363.2508412, Copyright 2013 by ACM, Inc.
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Figure III.1: Realtime generation of physics-based motion control for human grasping:
(left) automatic grasping of objects with different shapes, weights, frictions, and spatial
orientations; (right) performance interfaces: acting out the desired grasping motion in
front of a single Kinect.

using a rich set of grip modes (e.g., the power and pinch grip).

Control. An ideal animation system should empower the user with an easy-to-use

interface. This is challenging since we aim to develop a system that allows a random user

to generate a desired grasping action quickly and easily–with virtually no learning curve.

Realtime. Realtime animation is essential to many applications such as virtual reality,

video games, and interactive animation design. The algorithm must be fast enough so that

the interface appears responsive and the user remains engaged in the animation task.

The key contribution of this work is realtime generation of physics-based motion con-

trol for robust human grasping. Given an object to be grasped, our system automatically

constructs physics-based motion control to achieve realistic manipulation with the ob-

ject. Our solution leverages both prerecorded motion data and physics-based simulation.

We first introduce a data-driven algorithm that utilizes large sets of prerecorded human

grasping data to synthesize realistic animation for human grasping. The kinematic motion

synthesis process runs in real time and allows the user to generate realistic, controllable

animation for grasping a wide variety of objects with different shapes and sizes. Kine-

matic motion synthesis, however, does not consider the dynamics that cause the motion
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and therefore often fails to model dynamic aspects of objects. This motivates us to de-

velop physics-based motion control for transforming the synthesized kinematic motion

into a physically realistic one in real time. In addition, we develop a performance interface

for human grasping, which allows the user to act out the desired grasping motion in front

of a single Kinect camera.

We demonstrate the power of our approach by generating physics-based motion control

for grasping a wide variety of objects with different properties such as shapes, weights,

spatial orientations, and frictions (Figure III.1(left)). Our interface for human grasping is

intuitive and easy to use. The interface allows the user to sketch out the grasping action

in greater or lesser details. The user can issue a simple kinematic control input such as

“reaching the object and grasping it to move to the target location and orientation,” or

act out the desired grasping action in front of a single Kinect camera (Figure III.1(right)).

In addition, we show our physics-based motion control for human grasping is robust to

external perturbations and changes in physical quantities such as masses and frictions.

Contributions. Our work is made possible by a number of technical contributions:

• An efficient data-driven synthesis algorithm that utilizes a large set of prerecorded

human grasping data to generate realistic, controllable animation for grasping ob-

jects substantially different from database objects.

• A robust physics-based motion control algorithm that transforms kinematic motions

of the hand and object into physically realistic ones.

• A performance interface that allows the user to create a desired grasping action by

acting out the motion in front of a single Kinect camera.

• A high-quality human grasping database for grasping a wide variety of objects with

different grip styles, that will enable other researchers to apply their algorithms to
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this problem.

III.1 Background

Our system combines the power of data-driven synthesis and physics-based simulation

for human grasping and manipulation. We therefore focus discussion on hand motion

synthesis and simulation, with an emphasis on human grasping and manipulation.

Rule-based approaches [46, 47, 48] have been traditionally used for grasp pose synthe-

sis. This approach treats all or part of an object as a primitive shape (e.g., box and cylinder)

for which a grasp synthesis strategy is available. However, this approach requires solving

a challenging classification problem: determining which primitive should be used as an

approximation of an arbitrary shaped object. Moreover, there is no guarantee that synthe-

sized grasp poses are natural-looking and consistent with real world observations.

An appealing alternative to grasp synthesis is to use prerecorded grasp data [14, 17, 49,

19]. This approach is appealing because synthesized grasp poses are often natural-looking

and consistent with real world data. Elkoura and Singh [14] utilized a database of human

grasps to process kinematically synthesized hand poses for guitar playing, so that a natural

coupling between joint angles is preserved. Li and her colleagues [17] explored a data-

driven approach to grasp synthesis by searching closest examples in a prerecorded grasp

database to match the object shape. Amor and colleagues [49] constructed a probabilistic

model for human grasp poses from prerecorded data and used it to constrain the solution

space of grasp synthesis. Kyota and Saito [19] combined prerecorded grasp poses and

grasp taxonomy for interactive grasp synthesis. In addition, researchers have also explored

how to use prerecorded motion data to synthesize finger motions for gesturing characters.

For example, Jörg and her colleagues [50] used a prerecorded database of body and finger

motions to automatically add plausible finger motions to body motions.

Our approach utilizes prerecorded motion data for grasp synthesis. Our goal, however,
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is different because we aim to synthesize an entire sequence of human grasping action,

including reaching, closing, and manipulation, while previous approaches are focused on

synthesis of either single grasp poses [14, 17, 49, 19] or freehand gestures [50]. This mo-

tivates us to develop a new data-driven model that compactly represents spatial-temporal

behavior of human grasping. In addition, we combine data-driven synthesis with physics-

based motion control to model dynamic aspects of human grasping synthesis. This ensures

human grasping takes into account not only object geometry but also dynamic character-

istics of objects such as weights, frictions, and external perturbations.

Our idea of combining prerecorded motion data and physics-based simulation for grasp

synthesis is inspired by recent success on generating physically realistic human grasp-

ing from prerecorded motion data [15, 16, 51]. In particular, Pollard and Zoran [15] con-

structed physics-based motion control for grasping by fitting control set points from prere-

corded grasping data. Kry and Pai [16] estimated joint compliances to best match recorded

motion data and measured contact forces in hand-object interactions. Recently, Ye and

Liu [51] combined physics-based optimization with contact-based sampling to transform

a sequence of full-body poses with accurate wrist movements and a simultaneously ac-

quired sequence of object poses into a physically plausible manipulation motion.

Our method is most similar to [15] because we both focus on physics-based motion

control for human grasping. Physics-based motion control is appealing to human grasping

because it can be generalized to objects with new geometric and physical quantities. How-

ever, unlike [15], our motion control is not restricted to whole-hand or enveloping grasps.

Another distinction is that we complement physics-based motion control with data-driven

motion synthesis. This allows us not only to grasp a wide variety of objects with dif-

ferent shapes, weights, frictions, and spatial orientations, but also to synthesize a desired

grasping motion with intuitive and easy-to-use interfaces.

Our work is related to recent efforts on using physics-based optimization to human
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grasp and manipulation [52, 18, 53]. Notably, Liu [52, 18] explored a physics-based op-

timization approach that synthesizes physically plausible human gasping from an initial

hand grasping pose and a prescribed object motion. Our approach is different because

we build our system on physics-based simulation rather than physics-based optimization.

More importantly, our method does not assume any initial hand grasp poses or any pre-

scribed object motions required by [52, 18]. Instead, we utilize prior knowledge embedded

in prerecorded motion data for human grasping. Combining human motion priors with

physics-based simulation not only improves the realism of synthesized motion but also

reduces the time and effort required to create a desired animation.

III.2 Overview

Our goal herein is to generate robust realtime physics-based motion control for grasp-

ing a wide variety of objects with different shapes, weights, frictions, and spatial orien-

tations. The problem is challenging because human grasping requires considering hand

articulations, geometry and dynamic characteristics of the object to be grasped and the

selection of contact between the hand and the object. We address the challenge by lever-

aging both prerecorded motion data and physics-based simulation for human grasping.

Our system consists of the following major components:

Grasping data acquisition. Our system is data-driven, which requires large sets of

prerecorded human grasping data for motion synthesis. We acquired a high-quality motion

database for human grasping, including hand articulations, object movements, and contact

information between the hand and the object, using a combination of a twelve-camera

optical motion capture system [1] and two Kinect cameras.

Data-driven grasping modeling and synthesis. We decompose each grasping se-

quence into three phases, including reaching, closing, and manipulation, and develop an

efficient data-driven algorithm for synthesizing each phase of human grasping. Our data-

59



driven motion synthesis process runs in real time and allows the user to synthesize real-

istic, controllable hand motion for grasping objects substantially different from database

objects.

Physics-based motion control. Data-driven grasping synthesis, however, does not

consider the dynamics that cause the motion and therefore often fails to model dynamic as-

pects of human grasping. We address this challenge by developing a robust physics-based

motion control algorithm to transform synthesized kinematic motions into physically re-

alistic ones.

Performance interfaces for object manipulation. We develop an intuitive and easy-

to-use performance interface for object manipulation. Given a virtual object to be grasped,

the user acts out a desired motion in front of a single Kinect. The system automatically

transforms the user’s performance into a physically realistic motion for manipulating the

virtual object.

We describe these components in more detail in next sections.

III.3 Building a Human Grasping Database

We build a human motion database for grasping a number of primitive geometries with

different grip modes. Acquiring high-quality hand grasping motion, however, is challeng-

ing because it requires capturing hand articulations, object movements, and contact phe-

nomena between the hand and the object.

Configuration space. We describe a hand pose using a set of independent joint co-

ordinates q ∈ R33, including absolute root position and orientation as well as the relative

joint angles of individual joints. Figure III.2 (a) shows the number of degrees of freedom

for each joint. For Distal Interphalangeal (DIP) and Proximal Interphalangeal (PIP) joint,

we use 1 Degree of Freedom (DoF) to describe their movement. We choose to model

Metacarpophalangeal (MCP) joints using a ball and socket joint. Thus each finger has 5
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(a) Skeleton model (b) Mesh model

Figure III.2: Our hand pose consists of 33 Degrees of Freedom (Dof), including absolute
root position and orientation (6) and the relative joint angles of individual joints (27). (a)
skeletal hand model; (b) skinned hand mesh model.

degrees of freedom (DoF) except the thumb. For the thumb, we use 1 DoF for Interpha-

langeal (IP) joint, 3 DoF for MCP, and 3 DoF for Trapeziometacarpal (TM) joint. So a

3D hand pose consists of 33 DoF in total. The poses of rigid body objects are defined by

rigid transformations o ∈ R6. Figure III.2 (b) shows a skinned hand mesh model for hand

animation.

III.3.1 Human Grasping Capture

Our motion capture process builds on the recent success of acquiring high-fidelity

hand articulation data using a combination of an optical motion capture system and a

single Kinect camera [54]. We extended their system to human grasping since their sys-
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Figure III.3: Our grasping database included high-quality motion data for grasping primi-
tive geometries with ten grip modes.

tem was focused on capturing hand articulation data alone. Briefly, we synchronized a

twelve-camera Vicon motion capture system with two Kinect cameras and used them to

simultaneously capture hand articulations, object movements, and contact information be-

tween the hand and object. We initialized the pose of the hand and object at the first frame

and sequentially tracked 3D poses by minimizing the inconsistency between the hypothe-

sized poses and the observed data, including both 3D marker positions obtained from the

Vicon system and RGBD data from the two Kinect cameras. We employed Particle Swarm

Optimization (PSO) [55] to search an optimal pose of both the hand and object over time.

Complementing marker-based mocap with RGBD data from multiple Kinect cam-

eras significantly improves the reconstruction accuracy of human grasping. However, the

method still suffers from significant occlusions and often fails to identify correct contact

information between the hand and object. To address this issue, we instructed the human

subject to perform a particular grip mode for grasping (e.g., pinching grip) during motion

capture sessions, manually labeled contact information throughout the whole motion se-

quence, and incorporated explicit contact information into the pose optimization process.

The final database included motion capture data for grasping ten different objects us-

ing ten different grip modes. The motion was reconstructed at 120 frames per second.

Figure III.3 shows all the grip modes used for human grasping and Figure III.4 shows all

the objects in the database.
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Figure III.4: Our grasping database recorded high-quality motion data for grasping ten
database objects.

III.3.2 Grasping Data Processing

We decompose each human grasping sequence into three phases: “reaching” phase,

“closing” phase, and “manipulation” phase. During the “reaching” phase, the hand moves

to the object and opens the grip to enclose the object. For the “closing” phase, the grip

closes until the object is grasped. For the “manipulation” phase, the object in grasp is

moved to a target location. We segment each grasping sequence into three phases manu-

ally.

Besides, as the hand and the object may locate in different places for different capture

sessions, the motion needs to be aligned together. We transform each grasping motion

sequence to the object’s local coordinate system, which leads to a consistent representation

of human grasping data. Specifically, we build the local coordinate system in which the

origin is defined by the center of mass of the object, the z axis is defined as the “up”

direction perpendicular to the surface plane the object is sitting on, and the x axis is defined

as the direction from the center of the hand to the center of the object of the grasping pose

63



(i.e., the last frame of the “closing” phase). For grasping motion synthesis, we adopt the

same reference system for the object to be grasped. We synthesize a motion in the local

reference system of the object and then transform it back to the global coordinate system.

III.4 Kinematic Synthesis of Human Grasping

Given an object to be grasped, our kinematic motion synthesis process synthesizes mo-

tion of the “closing” phase first, then the “reaching” phase, and finally the “manipulation”

phase. We prioritize “closing” motion synthesis because the last frame of “closing” motion

determines the “grasping” pose which is the most important pose for human grasping. In

the rest of this section, we discuss how to synthesize the motion for each phase in details.

III.4.1 Closing-phase Motion Synthesis

The goal of “closing” phase synthesis is to generate a motion that closes the grip and

grasps the object. Ideally, synthesized motion should be natural-looking, collision free,

dynamically feasible, and consistent with the goals specified by the user. In the follow-

ing, we first apply statistical motion modeling techniques to prerecorded motion data to

obtain a probabilistic motion model for closing motion synthesis. We then formulate the

kinematic motion synthesis process as an optimization problem. We discuss how to solve

the optimization in realtime and how to incorporate dynamic feasibility testing into the

optimization process to ensure synthesized motion is dynamically feasible.

III.4.1.1 Closing-phase Motion Modeling

This section focuses on constructing a compact probabilistic motion model for “clos-

ing” phase. Our analysis algorithm builds upon deformable motion models for full-body

motion synthesis [56]. We extend deformable motion models to human grasping by con-

structing grip-dependent deformable motion models for “closing” phase. This represen-

tation is motivated by our observation on human grasping data. While “closing” motion
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displays a wide range of variations with respect to objects with different geometry and

physical quantities, high-level structures of closing phase associated with a particular grip

mode are always fixed. For example, closing motion using a pinch grip of the thumb and

index has a consistent motion pattern and similar contact phenomena between the hand

and the object. It involves simultaneously moving the thumb and index to enclose and

contact the object while keeping other fingers approximately static.

For each grip mode g = 1, ...,G, we register all the motion segments against each other

and decompose them into two functional data sets suitable for generative statistical mod-

eling. Briefly, we pick one segment as a reference motion and use it to register the rest

of segments with appropriate time warping functions. We employ dynamic time warp-

ing techniques to register all motion segments. Next, we warp each motion segment to a

new motion segment in a canonical timeline defined by the reference motion using their

corresponding time warping functions. This step allows us to decompose all the motion

segments into two functional data sets: warped motion segments and time warping func-

tions. Both data sets are defined in the canonical timeline and therefore are suitable for

functional statistical analysis.

We apply functional PCA to all the warped motion segments associated with each grip

mode. As a result, we can model a motion segment defined in a canonical timeline by the

reference motion using a mean motion segment p0 and a weighted combination of eigen

motion segments pm,m = 1...,M:

P(~α) = p0 +[p1...pM]~α, (III.1)

where the vector ~α stacks the eigen weights and the vectors pm,m = 1, ...,M are a set of

orthogonal modes to model geometric variations across the entire motion sequence.

Similarly, we apply functional PCA to all the time warping functions associated with
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each grip mode to build a low-dimensional model for time warping functions. To preserve

the property of time warping functions, which should be positive and strictly monotonic

everywhere, we transform the precomputed time warping functions w(t) into a new space

z(t): z(t) = ln(w(t)−w(t − 1)), t = 1, ....T and apply the functional PCA to the trans-

formed time warping functions in the new space. Finally, we transform the function back

to the original space and obtain the following low-dimensional representation for time

warping functions:

H(t;~γ) = ∑
t
i=1 exp(b0(i)+ [b1(i)...bK(i)]~γ), (III.2)

where the vector ~γ is the combination weights to represent a time warping function in a

low-dimensional space and the scalar bk(i) represents the i-th component of the k-th eigen

vector bk.

After combining Equation (III.1) and (III.2), we obtain the following parametric func-

tion to model spatial-temporal variation of the “closing” motion xg associated with a par-

ticular grip g:

xg = Mg(~α,~γ) = Pg(~α)⊗Hg(~γ) (III.3)

where the operator⊗warps a motion segment Pg(~α) in the canonical time line with a time

warping function Hg(~γ).

One appealing property of a grip-dependent deformable motion model is to automati-

cally annotate contact information for generated motions. Note that the last frame of “clos-

ing” motion defines the “grasping” pose crucial to hand-object interaction. This ensures

that synthesized motions are always consistent with a particular contact grip. Furthermore,

we learn a joint probability density function prg(~α,~γ) to model the correlation between the

geometric and timing variations. We model the prior distribution with a Gaussian mixture
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model (GMM). The parameters of the Gaussian mixture model are automatically estimated

using an Expectation-Maximization algorithm [57].

The deformable model and the joint probability distribution define a generative model

for closing-phase motion synthesis. We can generate an infinite number of natural-looking

grasping motions for a particular grip mode by sampling the joint probability distribu-

tion prg(~α,~γ) and warping the sampled motion Pg(~α) in the canonical timeline with the

sampled time warping function Hg(~γ). In the next section, we discuss how to use the

generative motion model of “closing” phase to synthesize realistic “closing” motions for

grasping objects with different shapes, sizes, and spatial orientations.

III.4.1.2 Objective Function

We formulate the motion synthesis process as an optimization problem:

min
~α,~γ,g

wpEp(~α,~γ)+wcEc(xg)+wkEk(xg)+wdEd(xg)+wqEq(xg) (III.4)

where ~α,~γ are parameters of the deformable motion model and xg = Mg(~α,~γ) is a motion

generated from the deformable motion model corresponding to a particular grip mode

g. The first term Ep is the motion prior term which evaluates how well the synthesized

motion is consistent with database examples. The second term Ec is the motion control

term which ensures the synthesized motion achieves the goal specified by the user. The

third term Ek is the collision constraint term which avoids the collision between the hand

and the object. The fourth term Ed is the contact distance term which measures how well

the contact fingers contact the object. And the last term Eq is the grasp quality term which

measures the quality of the synthesized grasping pose. The weights wp, wc, wk, wd and wq

control the importance of each term and are experimentally set to 0.06, 0.9, 1.0, 0.4 and

2.0, respectively.

Motion prior term. The prior term, Ep, ensures the synthesized grasping motion is
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consistent with prerecorded examples in the database. We minimize the negative log of

the prior distribution function pr(~α,~γ), yielding the following energy formulation:

Ep =− ln pr(~α,~γ). (III.5)

Motion control term. The motion control term, Ec, ensures generated motion achieves

the goal specified by the user. Specifically, it measures the inconsistency between the

synthesized motion xg and the user constraints c. The system allows the user to sketch out

the grasping motion in greater or lesser details. One way to control the grasping action is

to specify grip modes g and/or contact point constraints for grasping fingers. Alternatively,

the user could act out the desired grasping action in front of a single Kinect camera (Please

refer to Section III.6 for details of performance interfaces).

Collision constraint term. This term ensures the synthesized hand does not penetrate

the object during the entire sequence of “closing” motion. In our implementation, we pe-

nalize the penetration between the hand and the object, resulting in the following objective

function term:

Ek(xg) =
1
N

N

∑
i=1

penei(xg,ob ject) (III.6)

penei(xg,ob ject) =


0 if no penetration

d otherwise
(III.7)

where N is the number of frames in closing phase and the function penei outputs the

penalty value based on the penetration between the hand and the object at frame i. In our

experiment, we set the parameter d to 10.

Contact distance term. This term measures how well contact fingers contact the ob-
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ject. Given a hypothesized motion xg, we first use forward kinematic function f to map

the contact point on each contact finger from its local coordinates p to the global coor-

dinates f(xg;p). We define the following contact term to minimize the distance between

each contact point and its closest point O on the surface of the object:

Ed =
Nc

∑
i=1
||f(xg;pi)−Oi||, (III.8)

where Nc is the number of contact points for a particular grip model g. Note that for

a particular grip mode we know the total number of contact points (Nc) and their local

coordinates (pi) because we embed contact information into grip-dependent deformable

motion models during the modeling process.

Grasp quality term. To enable physics-based motion control, unstable grasp poses

(e.g., grasping two adjacent surfaces of a cube) is dynamically unstable and should be

avoided in kinematic motion synthesis. We evaluate the grasp quality term Eq(x) based

on a weighted combination of two grasp metrics (for more details on grasp quality, please

refer to [58, 59, 60, 49]):

w1E1
g +w2E2

g (III.9)

where the weights w1 and w2 control the importance of each term and are set to 0.06 and

4.0, respectively. Note that we evaluate the grasp quality term based on the “grasping”

pose (i.e., the last frame of the “closing” phase).

The first term, E1
g = ||CM−C||, measures the distance between the center of mass

(CM) of the object and the centroid (C) of the contact polygon (2D) or polyhedron (3D).

The contact polygon/polyhedron is the polygon/polyhedron that connects each contact

point. Intuitively, the effect of inertial and gravitational forces on the grasp is minimized

when the distance is minimized. A small distance often results in a more stable grasp. This
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term is adopted from robotic literature [60].

The second term, E2
g = ∑

SP
i=1(ai,1 +ai,2) is the friction cone constraint term. The cone

of friction is a geometric interpretation of the maximally allowed angle φ between the sur-

face normal and the applied force vector. Specifically, for each pair of antagonist fingers,

we compute their nearest positions on the surface of the object and use them to define a

connecting line. If this line lies within both cones of friction at the intersection points with

the object surface, we regard the grasp as stable. In other words, for achieving a stable

grasp with two fingers we need to minimize the angles θ1 and θ2 between the connecting

line and the contact normals, until both are smaller than φ . Note that SP is the number of

antagonist finger pairs, which depends on the grasp mode. An antagonist pair is two fin-

gers that can exert forces in opposing directions so as to create stable grasps. For example,

SP is “1” for pinching using the thumb and index, and “4” for power grip using all fingers.

In the latter case the thumb is antagonist with all other four fingers. For more details of

this term, please refer to [49].

III.4.1.3 Dynamic Feasibility Test

We further test whether a solution (i.e., a grasping pose) can produce sufficient contact

forces to counteract the gravitational force of the object in static equilibrium. This test

is necessary for synthesizing dynamically feasible grasping motion because there is no

guarantee that the optimization solution from Equation (III.4) is physically feasible even

with the grasp quality term.

In our application, we model each contact patch using multiple contact points (4 in our

experiment) to approximately model contact torques caused by soft bodies. Each contact

force ~fi is represented as a linear function of nonnegative basis coefficients ~λi [61]: ~fi =

Bi
~λi, where the matrix Bi is a 3×4 matrix consisting of 4 basis vectors that approximately

span the friction cone for the i-th contact force.
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We conduct a dynamic feasibility test by solving the following optimization problem:

arg min
~λi, f⊥i

∑
i

f⊥i (III.10)

subject to ∑
i

Bi
~λi− ~G = 0 (III.11)

∑
i
(~ri×Bi

~λi) = 0 (III.12)

~ni
T ~f//i = 0,∀i (III.13)

~
f//i − f⊥i ~ni = Bi

~λi,∀i (III.14)

~λi > 0,∀i (III.15)

f⊥i > 0,∀i (III.16)

where f//i is the friction force of the i-th contact force and f⊥i represents the magnitude

of the i-th normal contact force. ~ri is a vector that points from the center of mass of the

object to the i-th contact point. Equation (III.11) and (III.12) ensure that the resultant force

and torque of the object are both zeros, so that the object can be grasped in equilibrium.

To ensure ~fi = Bi
~λi is a valid contact force, we constrain the friction direction to be per-

pendicular to the contact normal (Equation (III.13)) and within the Coulomb friction cone

(Equation (III.14)). Equation (III.16) ensures that the hand can only push, not pull on

the object. In addition, we minimize the sum of normal contact forces f⊥i to remove the

ambiguous solutions.

The linear objective function defined in Equation (III.10), together with linear con-

straints Equation (III.11)–(III.16), forms a linear programming problem and can be solved

efficiently by simplex methods. If a feasible solution cannot be found, we consider that

the solution fails the dynamic feasibility test.
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III.4.1.4 Motion optimization

We now discuss how to solve the optimization problem defined in Equation (III.4) in

real time and how to incorporate the dynamic feasibility test into the optimization process.

We employ Particle Swarm Optimization (PSO) [55] to minimize the objective func-

tion defined in Equation (III.4). PSO is a population-based stochastic approach for solving

continuous and discrete optimization problems. In particular, PSO optimizes a problem by

having a population of candidate solutions, termed “particles”, and moving these particles

around in the search-space according to simple mathematical formulae over the particle’s

position and velocity. Each particle’s movement is influenced by its local best known po-

sition and is also guided toward the global best known position in the search-space, which

are updated when better positions are found by other particles. This is expected to move

the swarm toward the best solutions.

We choose PSO for motion optimization because of three reasons. First, PSO is a

sampling-based approach and does not demand derivative computation, which is almost

impossible to evaluate for our objective function. Second, PSO is easy to parallelize and

allows for a significant speed-up via GPU implementation. Third, unlike gradient-based

optimization, PSO can output multiple solutions which are particularly suitable for our

dynamic feasibility test.

We generate an initial population by sampling the learned prior distribution (GMMs).

However, even with good initialization, the optimization might still run very slow, as each

time the objective function is evaluated, collision detection needs to be done for the entire

sequence of each particle (i.e., the hypothesized “closing” motion). For complex objects

with a large number of polygons, each optimization often takes more than ten minutes

to run. We speed up the collision detection evaluation by precomputing signed distance

transformation of the object [62]. We can precompute the signed distance transformation
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of the object because the object is always static for the entire “closing” phase. The signed

distance transformation computes the minimum distance between each 3D voxel and the

surface of the object. We set the distance values to be positive for voxels outside the surface

of object and negative for every inside voxel. With the precomputed signed distance field,

the runtime collision detection evaluation is simplified as lookup table operations, which

allow us to synthesize kinematic grasp motion in real time.

As mentioned in Section III.4.1.3, there is no guarantee that the solution obtained from

the optimization is dynamically feasible. Although the dynamic feasibility test can be

solved via simplex methods efficiently, testing it on each particle at each iteration will

result in a heavy computational cost. To address this issue, we focus dynamic feasibility

test only on the particles of the last generation. We pick the “best” particle that passes

the dynamic feasibility test as the final synthesis solution. If there are no such particles,

we run the optimization again, which rarely occurs in our experiment as it often indicates

that the object might be too big and/or heavy to be grasped. Humans might not be able to

grasp a huge object because of limited hand size and they cannot grasp a very heavy object

because of joint torque limits.

Although we include the contact distance term in Equation (8), the contact fingers

might still not be close enough to contact the object because of the nature of stochastic

optimization. We refine the synthesized grasping motion by applying inverse kinematics

(IK) to pull the contact point on the finger to the closest point on the object.

III.4.2 Reaching-phase Motion Synthesis

The goal of reaching-phase motion synthesis is to generate a realistic “reaching” mo-

tion that transitions from an initial hand configuration to the starting frame of synthesized

“closing” motion. A simple way to achieve the goal is to linearly interpolate in-between

motions. However, linear interpolations often fail to produce realistic movement as “reach-
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ing” motion often exhibits certain characteristics. We address the issue by searching the

closest example in the database and editing it to satisfy constraints specified at the starting

and ending frames.

Specifically, we search the database using the initial hand configuration and the starting

pose of the “closing” phase, and then apply Laplacian editing [63] to modify the closest

example x̃r to meet the new constraints on the boundary. Laplacian editing ensures the

edited motion xr satisfies the boundary conditions while preserving fine details of the

original motion x̃r. This requires solving the following quadratic programming problem:

argmin
q

N−1

∑
i=2
||(qi−1 +qi+1−2qi)− (q̃i−1 + q̃i+1−2q̃i)||2

+w1(||q1−C1||2 + ||qN−CN ||2)

+w2||qN+1 +qN−1−2qN ||2

(III.17)

where q̃i and qi are the i-th pose of the closest motion x̃r and the edited motion xr, re-

spectively. The first term preserves fine details of the original motion (e.g., 1D Laplacian

coordinates). The second term ensures that the edited motion is consistent with boundary

constraints, starting at the initial pose configuration C1 and ending at the first pose CN of

the synthesized “closing” motion. The third term, where qN+1 is the second frame of the

synthesized “closing” motion, ensures a smooth transition on the boundary by minimizing

the velocity changes at the transition frame. The weights w1 and w2 are set to 10 and 0.01,

respectively.

III.4.3 Manipulation-phase Motion Synthesis

During the “manipulation” phase, our goal is to move the object in grasp from an initial

pose to a target pose. This requires synthesizing motions for both the hand and the object.

Similar to “reaching”-phase motion synthesis, we search the prerecorded motion database
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using the initial and target poses of the object and deform the closest example to interpolate

the initial and target poses. This requires solving a quadratic optimization problem similar

to Equation (III.17). After the object’s trajectory is synthesized, the hand’s trajectory can

be synthesized accordingly, as we assume the hand is static with the object and the local

joint angle values of the hand are unchanged during the “manipulation” phase.

III.5 Physics-based Grasping Control

This section introduces a robust motion control algorithm that supplies joint torques to

drive the hand to track the reference trajectories of the hand and the object obtained from

kinematic motion synthesis during each time step of the simulation. This process runs in

real time and is fully automatic.

III.5.1 Hand Grasping Dynamics

The Newtonian dynamics equations for hand grasping can be described as follows:

M(q)q̈+C(q, q̇)+h(q) = τ +JT f (III.18)

where q, q̇, and q̈ represent the joint angle poses, joint velocities, and joint accelerations

of the hand, respectively. The quantities M(q), C(q, q̇) and h(q) are the joint space inertia

matrix, centrifugal/Coriolis, and gravitational forces, respectively. The vector τ repre-

sents joint torques supplied to the hand and the vector f represents contact forces/torques

between the hand and the object. The Jacobian matrix J maps contact forces/torques to

generalized forces.

III.5.2 Motion Control Representation

We model the total joint torque (τ) supplied to drive the hand as a combination of three

terms:

τ = τactive + τgravity + τgrasp (III.19)
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where τactive is the active joint torque which is used to track the reference trajectory of the

hand. More specifically, this term is used to cancel components of M(q)q̈+C(q, q̇). The

second term τgravity is the gravity compensation term which is set to exactly cancel the

effects of gravitational forces h(q). The third term τgrasp is the grasp joint torque which

is set to balance contact forces/torques JT f. Note that we drop the grasp joint torque term

for “closing” phase.

Active joint torque. We model active joint torque using PD-servos (Proportional

Derivative). All joints in the hand have proportional derivative (PD) controllers which

are active at all times. At any time instance, active joint torques (τactive) of the hand are

calculated as

τactive = kp(q̄−q)− kdq̇ (III.20)

where q̄ is the target pose of the hand, which is directly obtained from the reference tra-

jectory of the hand. q and q̇ are the current joint pose and velocity of the hand. And kp

and kd are gain and damping coefficients for PD controllers.

Grasping joint torque. Grasping joint torque τgrasp is applied to balance contact

forces from the object. In our application, we model contact forces applied at each contact

patch as a combination of a contact force and a torsional torque applied at the center of

pressure (COP). Torsional torques are commonly used in humanoid robotics and biome-

chanics community (e.g., [64]) to model the resultant torque of multiple contact forces

from the same contact patch. Mathematically, the resultant of multiple contact forces ap-

plied at a planar contact patch can be represented as a combination of a contact force and

torsional torque applied at the center of pressure (COP)∗. As a result, the net torque caused

by multiple contact forces at the COP is just a torsional torque caused by multiple friction

forces. One benefit of torsional torques is to enable us to approximately model the contact

∗Note that COP is chosen to ensure the net torque caused by vertical contact forces at multiple points is
zero.
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torques caused by soft bodies, thereby producing more subtle contact phenomena between

the hand and the object.

Let ~fk and ~τk be the contact force and torsional torque at a particular contact patch

k,k = 1, ...,K. We can define the grasping joint torque to balance the contact forces and

torsional torques as follows:

τgrasp = ∑k JT
k [
~fk

T
;~τk

T ]T (III.21)

where Jk are Jacobian matrices to map contact forces ~fk and torsional torques ~τk to gen-

eralized forces. This, however, requires explicitly modeling contact forces and torsional

torques between the hand and the object. In the next section, we discuss how to compute

appropriate contact forces and torsional torques required to track the reference trajectory

of the object.

III.5.3 Contact Force Modeling

We introduce virtual forces and torques [65] to drive the simulation of the object to

match the reference trajectory of the object, including the reference position data ōp and

reference orientation data ōr, both of which are obtained from kinematic synthesis process.

We model virtual force ~fv and virtual torque ~τv using the following PD-servos:

~fv = kp(ōp−op)− kd ȯp

~τv = kp(ōr−or)− kd ȯr
(III.22)

where op and ȯp are the current position and linear velocity of the object. or and ȯr are

the current orientation and angular velocity of the object. Again, kp and kd are gain and

damping coefficients for PD controllers. Unlike the hand, we cannot directly apply the

above PD control to advance the simulation for the object. This is because the object is
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not active and its movement is completely determined by contact forces. We, therefore,

must compute appropriate contact forces/torsional torques to achieve the same effects of

virtual forces/torques applied to the object.

We compute contact forces and torsional torques by solving the following optimization

problem:

min{~fk,lk}α1‖∑k ~fk + ~G−~fv‖2 +α2‖∑k(~rk×~fk + lk~nk)−~τv‖2

+α3 ∑k fk
T fk +α4 ∑k lk2

s.t. ~fk stays within the friction cone,∀k

(III.23)

where ~fk and lk~nk are the contact force and torsional torque at the kth contact patch, where

lk and ~nk are the magnitude and normal direction of the kth contact patch. ~rk is a vector

that points from the object’s center of mass to the location of the kth contact point.

The first and second terms measure how well contact forces and torsional torques from

all the contact patches realize the virtual force and torque required to track the reference

trajectory of the object. The third and fourth terms are the regulation terms which minimize

the magnitude of forces and torques. The weights α1, α2 , α3 and α4 are set to 1.0, 1.0,

0.1 and 0.1, respectively.

Again, we linearize the friction cone constraint for each contact force by using poly-

hedral approximation of the friction cone. Therefore, we express each contact force as

a linear combination of base vectors, ~fk = Bk
~λk. This allows us to efficiently solve the

optimization problem in Equation (III.23) via quadratic programming.

III.6 Performance Interfaces for Physically-based Grasping

Our performance-based interface for human grasping seeks to enforce realistic dy-

namic interaction with objects in the virtual world, while faithfully preserving the nuances

of the actor’s performance. Given a virtual object to be grasped, the user acts out a desired
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grasping action in front of a single Kinect camera. The system automatically transforms

the actor’s performance into physically realistic grasping consistent with geometry and

dynamic properties of the object on the fly. Figure III.5 shows several snapshots of live

screen capture of performance interfaces in use. The computer screen displays the recon-

structed hand motion from the performance interface to allow realtime feedback from the

performer. In the following, we discuss how to reconstruct the performance of the hand

using a single Kinect camera and how to transform them into physically realistic motion

for manipulating the virtual objects.

Figure III.5: Performance interfaces for human grasping: (top) live screen capture of per-
formance interfaces in use–the computer screen displays the reconstructed motion from a
single Kinect to allow realtime feedback from the performer; (middle) kinematic synthesis
results; (bottom) physically simulated motion. Note that green arrows visualize the contact
forces for each contact patch.

Realtime tracking of hand grasping. We employ a single Kinect camera to track the

performance of human grasping. We choose the Kinect camera because of its low cost

and simplified setup. The Kinect camera provides a 320× 240 depth image at 30 frames

per second (fps) with depth resolution of a few centimeters. Similar to [66], we formulate

79



the kinematic hand tracking as an optimization problem by minimizing the discrepancies

between the hypothesized data and the observed data, including depth data and color skin

of the hand, and employ Particle Swarm Optimization (PSO) [55] to search an optimal

pose of the hand over time. To improve the robustness and speed of the tracking process,

we constrain the solution space of the hand to a low-dimensional subspace automatically

constructed from prerecorded grasping data via Principal Component Analysis (PCA).

The tracking system runs in realtime (20 frames per second). Figure III.5(top) shows live

screen captures of our tracking process.

On-the-fly motion transformation. However, hand tracking data obtained from a

single Kinect is often noisy due to noisy depth measurement and self-occlusion caused by

a single Kinect. Even with high-quality hand motion data obtained by a “perfect” hand

tracker, the performance of the actor still cannot be directly mapped to grasp the object

in an appropriate manner. Keep in mind that the actor performs without objects in the

hand and therefore the performance of the hand is often inconsistent with geometry and

physical quantities of the object. In practice, we have observed that contact fingers often

appears not to touch the object at all or penetrate into the object during the tracking process

(Figure III.6(c)). Our solution is to utilize deformable motion model of human grasping

and physics-based motion control to transform noisy hand motion data from hand tracking

process into physically realistic manipulation data. Figure III.6(d) and Figure III.6(e) show

the synthesized kinematic motion and the simulated manipulation motion.

We generate physically realistic manipulation via performance interfaces in the follow-

ing order: reaching, closing, and manipulation. For “reaching” and “manipulation” phases,

we directly transform the tracking motion into physically realistic one using physics-based

motion control described in Section III.5. We choose to model kinematic motion of “reach-

ing” and “manipulation” phases directly based on tracking data rather than database ex-

amples due to two reasons. First, hand motion for “reaching” and “manipulation” phases
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(a) (b) (c) (d) (e)

Figure III.6: Performance interfaces for human grasping: (a) input RGB image; (b) input
depth image; (c) tracking result; (d) synthesized kinematic motion; (e) simulated motion
for human grasping.

are mainly about changes of global poses and therefore are easy to track. Second for both

phases, there is little interaction between the hand and object because “reaching” does not

contact the object and we assume the object stays relatively static with the hand during the

“manipulation” phase. For “closing” phase, before we do physics-based motion transfor-

mation, we utilize deformable motion models of human grasping to transform noisy hand

tracking data of closing phase into high-quality closing motion consistent with shapes and

spatial orientations of objects. This is achieved by optimizing the same objective function

described in Section III.4.1. Note that for performance interfaces, the motion control term

Ec in Equation (III.4) evaluates the difference between the synthesized closing motion and

the tracking motion obtained from a single Kinect.

Our kinematic motion transformation process requires on-the-fly classification of ac-

tor’s performances. We provide a simple yet very effective way to automatically recognize

different phases of human grasping: “reaching”, “closing”, “manipulation”, and “releas-

ing”. The user starts with the “reaching” phase. If the distance between the virtual hand

and the object is smaller than a threshold, the object is highlighted to indicate a switch

to the “closing” phase. During the “closing” phase, the user closes the grip to grasp the

object. Once the grip size is found to keep unchanged for a short period of time, the “clos-

ing” phase ends and the object is recognized to be grasped and is ready to be manipulated.
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During the “manipulation” phase, the user can translate and rotate the virtual object in 3D

space and move it to any target location and orientation using performance interfaces, be-

cause we assume the object stays relatively static with the hand during the “manipulation”

phase. Releasing is automatically detected by checking the grip size. Once the grip size is

found to increase for a short period of time, the object is released from the hand.

III.7 Results

We have demonstrated the power of our method by synthesizing physically realistic

human grasping for a wide variety of objects of different shapes, sizes, masses, frictions,

and external perturbations. We also show our system can generate different grip modes to

grasp the same object. Our results are best seen in video form.

Joint Kp Kd Joint Kp Kd
roottranslate 400.0 50.0 rootrotate 600.0 50.0

thumb1 10.0 0.3 thumb2 8.0 0.2
thumb3 4.0 0.4 index1 4.0 0.2
index2 3.0 0.1 index3 2.0 0.1

middle1 4.0 0.4 middle2 4.0 0.1
middle3 2.0 0.1 ring1 4.0 0.4

ring2 3.0 0.1 ring3 2.0 0.1
pinky1 4.0 0.4 pinky2 3.0 0.1
pinky3 2.0 0.1

ob jecttranslate 5.0 0.5 ob jectrotate 5.0 0.5

Table III.1: Parameters for physical simulation. Finger id is named in a way from the root
to the finger tip. For example: index1 is the index joint closest to the root. And index3 is
the index joint closest to the tip. All the examples have the same Kp and Kd .

Computational timing. We implement our physically-based motion control on the

Open Dynamics Engine (ODE). In our experiment, we set the simulation time step to

1ms. Table III.1 shows all the simulation parameters used in our motion control. All
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of our examples run on a machine with Inter Core(TM) i7-3930K and NVIDIA Geforce

GTX 680 with realtime fps. A typical timing of kinematic motion synthesis is shown in

Table III.2. Note that for each example, kinematic motion synthesis of closing, reaching,

and manipulation is done only once. The computational time of contact force estimation

for a single simulation is about 0.4ms.

timing frame number frame rate
closing 219.41ms 8 36.5

reaching 0.80ms 49 61250
manipulation 0.15ms 35 233333

total 220.36ms 92 417.5

Table III.2: Computational timings of kinematic motion synthesis for each phase of grasp-
ing motions.

Different shapes. Figure III.7(top) shows that the system can grasp a wide variety of

objects substantially different from database ones.

Different sizes. Our system allows the user to grasp objects with a wide range of sizes.

Figure III.7(middle) shows the results of grasping a cube of four different sizes, including

50mm, 70mm, 90mm, and 110mm. Note that none of the cubes is in the database.

Different grip modes. The system can generate a desired grasping action with differ-

ent grip styles. For example, Figure III.7(bottom) shows the cup can be grasped using both

precision grasps (“pinch”) and power grips.

Kitchen table. We demonstrate the power of our synthesis system by grasping objects

on the kitchen table. There are five objects on the table, including an “apple”, a “pear”, a

“‘banana”, a “goblet”, and a “can”.

Stacking blocks. We demonstrate the control accuracy of our physics-based motion
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Figure III.7: Object grasping: (top) grasping objects of different shapes; (middle) grasping
a cube of different sizes; (bottom) grasping a cup with different grip modes; from left to
right: thumb and index finger, thumb and middle finger, all fingers except index fingers,
and all fingers.

synthesis algorithm for human grasping by stacking blocks to form a particular pattern.

The final pattern from our synthesis algorithm is consistent with the desired one (Fig-

ure III.8). During the synthesis process, we generate a “releasing” motion to chain the

grasping motion of each block together. The “releasing” motion is synthesized in a similar

way as “reaching” phase, where the nearest neighbor is searched in the database and then

modified to satisfy new constraints at the starting frame. The last frame of “releasing”

phase for the current block is used as the starting frame of “reaching” phase for the next
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(a) (b) (c)

(d) (e) (f)

Figure III.8: Stacking blocks to form a particular pattern: (a) target blocks; (b) initial
blocks; (c)–(e) grasping the objects to achieve the target pattern; (f) final blocks.

block.

III.8 Evaluation

In this section, we evaluate the performances of two key components of our system:

kinematic motion synthesis and physics-based motion control. In addition, we evaluate

the robustness of our system in terms of changes in physical quantities and external per-

turbations.

III.8.1 Evaluation on Kinematic Motion Synthesis

Our grip-dependent deformable motion model xg = Mg(~α,~γ) and prior distributions

prg(~α,~γ) ensure synthesized kinematic motion of the hand is natural-looking. However,
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(a) (b)

(c) (d)

Figure III.9: Kinematic synthesis evaluation: (a) without the collision constraint term; (b)
without the contact polygon term (the first grasp quality term); (c) without the friction
cone term (the second grasp quality term); (d) with all terms.

in order to generate realistic human grasping consistent with the object, they need to be

combined with the collision constraint term and grasp quality term. We have evaluated the

importance of the collision constraint and grasp quality terms by dropping off each term

in the objective function (Equation III.4). If the collision constraint term Ek is dropped off,

the hand may collide with the object before it is grasped (Figure III.9(a)). If the contact

polygon term E1
g (i.e., the first part of the grasp quality term ) is dropped off, the contact

points may be too near to the object edge, which often leads to unstable grasping poses
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(Figure III.9(b)). If the friction cone term E2
g (i.e., the second part of the grasp quality

term) is dropped off, the grasp becomes unstable, as can be seen in Figure III.9(c). With

all terms included, the system outputs a realistic grasping motion consistent with the object

(Figure III.9(d)).

As mentioned in Section III.6, hand tracking data obtained from a single Kinect is often

noisy and inconsistent with the object to be grasped, and thereby cannot be directly used

for grasping objects. Figure III.6 shows the input data from a single Kinect, tracked hand

data, synthesized hand data, and simulated motion for human grasping. Our kinematic

motion synthesis process automatically transforms noisy and inconsistent hand tracking

data to realistic interaction with objects. Our evaluation video also shows that directly

constructing physics-based motion control from noisy hand tracking data fails to achieve

appropriate dynamic interaction with objects.

III.8.2 Evaluation on Physics-based Motion Control

To evaluate the effectiveness of our motion control and show the necessity of the To

evaluate the effectiveness of our motion control and show the necessity of the grasping

joint torque term in grasping motion control, we have compared against alternative meth-

ods, including trajectory tracking with PD control and physics-based motion control pro-

posed by [15]

Comparison against trajectory tracking. We first compare our method with tra-

jectory tracking using PD control. We implemented the trajectory tracking using open

dynamics engine (ODE) by dropping off grasp joint torque (τgrasp) in Equation (III.19).

For trajectory tracking, the contact forces used for advancing the simulation are directly

obtained from ODE. The accompanying video shows a side-by-side comparison between

our method and trajectory tracking. Our motion control can achieve a stable grasp while

the trajectory tracking method fails to grasp the object firmly. This is because trajectory
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tracking ignores the movement of the object.

Comparison against [15]. We have compared our method against physics-based mo-

tion control developed by [15]. Our method is based on per-frame trajectory tracking,

while their algorithm is based on finite state machine representation. To do a fair com-

parison between the two, we also extend their method to per-frame trajectory tracking.

Per-frame trajectory tracking means that the target pose in their motion control is directly

obtained from each frame of the reference kinematic motion, instead of interpolated by

key poses from finite state machine representation in their original paper. The accompa-

nying video shows a side-by-side comparison between our method and two alternatives.

Both alternatives fail to grasp the object firmly. In contrast, our control method success-

fully grasps the object because we explicitly model contact forces required for tracking

the reference trajectory of the object.

III.8.3 Generalization and Robustness of Motion Control

One appealing property of our physics-based motion control is its strong generaliza-

tion ability. The accompanying video shows our motion control is robust to changes in

geometry and physical quantities of the objects and external perturbations.

Robust to changes in geometry and physical quantities. We first show a motion con-

trol generated for grasping a “bunny” can be directly applied to grasp the same object with

different frictions and weights. In the accompanying video, we also show a motion control

generated for grasping a “cube” can be directly applied to grasp objects with completely

different shapes such as “cylinder” and “pyramid”.

Robust to external perturbations. Our motion control is robust to external pertur-

bations. In our experiment, external perturbations are generated by impulses caused by

falling balls. The video shows how our motion control reacts to different weights of the

falling ball. A “light” ball only generates very subtle impacts while a “heavy” ball pro-
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duces vibrations between the hand and the object.

III.9 Discussion

We have introduced a robust physics-based motion control algorithm for realtime syn-

thesis of human grasping. We demonstrate the power of our approach by generating phys-

ically realistic motion for grasping and manipulating a wide variety of objects of different

shapes, sizes, weights, spatial orientations, and frictions. Our performance interface al-

lows the user to create a desired grasping action quickly and easily. In addition, we have

shown our physics-based motion control is robust to changes in geometry and physical

quantities of objects and external perturbations.

Our approach combines the power of prerecorded motion data and physics-based sim-

ulation. The use of prerecorded grasp motion data significantly reduces the solution space

of our synthesis by constraining the human grasping to lie in natural appearance space.

Meanwhile, incorporating physics-based simulation into the synthesis process ensures

synthesized motions are physically plausible and take into account dynamic aspects of

the hand and object crucial to human grasping and manipulation.

We have tested our system on grasping a wide variety of objects of different quantities.

We have not yet attempted to rigorously assess when the system will fail. In the future, we

would like to evaluate our system on grasping and manipulating more objects. The current

system is focused on synthesizing hand motion with a single hand. We are interested in

extending the system to two-hands grasping as well as synthesis of the movement of the

arm and body. We would also like to extend our approach to dexterous manipulation and

this inevitably requires modeling more subtle and complex contact phenomena between

the hand and object. Another direction of future work is to modify and reuse the captured

grasping data to achieve new tasks such as video-based hand tracking and classification.
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CHAPTER IV

CONCLUSIONS AND FUTURE WORK

Realtime hand motion capture using a low-cost depth camera is a challenging but sig-

nificant task that may have huge impacts on next-generation interaction techniques (ges-

ture interaction). Compared with human body tracking, hand tracking is more difficult

because hand movement has larger viewpoint changes and more self-occlusions. To deal

with such challenges, we propose a novel and robust hand tracking algorithm that lever-

ages both model-based tracking and a per-frame pose regressor. In addition, we also ex-

plore the area of the human grasping synthesis We propose a robust and realtime system

that is capable to synthesize physically realistic grasping motions by utilizing large sets of

prerecorded grasping motion data.

More specifically, in Chapter II, we propose an end-to-end automated hand tracking

system that is capable to track 3D hand poses robustly in realtime via a single depth cam-

era. Our system is appealing, because it is realtime, low-cost, non-intrusive (no special

markers and suites) and fully automatic. To achieve this, we propose a hybrid tracking

scheme that complements the model-based tracking with a shape-indexed pose regres-

sor. In addition, to automate the full tracking process, we also propose a rapid 3D hand

modeling algorithm that utilizes a low-dimensional parametric hand model. We demon-

strate the power of our system by tracking a large amount of hand movements for multiple

subjects. Our system also achieves state-of-the-art accuracy when compared against alter-

native methods. In the future, we plan to continue improving our model-based tracking

process. As noted by prior research [45], kinematic priors learned from prerecorded mo-

tion data could be used to constrain the pose in the solution space of natural appearance

to further improve the quality of reconstruction pose. In addition, we plan to construct
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the subject-specific penetration model for each subject according to the acquired skinned

mesh to avoid finger penetration in output poses. The penetration model can be repre-

sented by a group of spheres. Then the problem is transformed to simplify a skinned mesh

by a group of spheres. It will help us remove the finger penetration in output poses by

adding penetration term in model-based tracking as in [7].

In Chapter III, we propose a grasping synthesis method that is capable to synthesize

physically realistic grasping animation in realtime. Our method leverages the power of

precaptured grasping motion dataset and physics-based grasping control. We demonstrate

the power of our method by synthesizing a large amount of grasping motion with different

objects and different grasp modes. In addition, we also provide an easy-to-use perfor-

mance interface that allows daily users to grasp a virtual object in front of a depth camera.

There are two directions to extend our work. First, we would like to include two hands

into grasping tasks, and there will be more contact selections and grasping dynamics to

deal with. Also, with the synthesis of the body and arm movement, the whole movement

will be complete. Second, the grasping synthesis is actually a simple version of manipula-

tion, because the grasping assumes that the hand is relatively static with the object while

grasping. We would like to further our research by focusing on dexterous manipulation,

which inevitably requires more subtle contact modeling and planning between the hand

and object.

Besides grasping synthesis, with our advanced realtime hand tracking system, we are

capable to explore more areas.

• Human Body Tracking. The human body tracking is very similar to the hand

tracking, and to some extent it is even easier than the hand tracking. Therefore, our

realtime hand tracking algorithm can easily migrate into the human body tracking.

In those applications that do not require high accuracy, we may also directly migrate
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our shape-indexed pose regressor into the human body tracking.

• Sign Language Recognition. A sign language consists of a sequence of hand poses.

By using HMM (Hidden Markov Model) or RNN (Recurrent Neural Network), we

can build a model for every sign and recognize it in realtime. The technology will

benefit to disabled people and help them communicate with normal people easily.

• Virtual Reality. Virtual reality devices (e.g. Oculus rift, Sony VR headset) is be-

coming popular nowadays. However, current VR devices are all headsets, which

only allow using head rotation to control the viewpoint. Gesture interaction is still

not added into VR devices yet. Oculus rift gives a temporary solution by using a

controller (Oculus touch) to substitute the gesture interaction. However, it is quite

intrusive for the user. With the advancement of realtime hand tracking technology,

adding gesture interaction into VR devices is a necessary step to improve the user

experience.

• Smart Control. Intelligent electrical home appliances (e.g.television, stream player,

refrigerator) are replacing traditional ones. Voice and gesture will be main control

methods for intelligent home appliances. With the realtime hand tracking, gesture

control will be practical for intelligent appliances.
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